
AN MBONE RECORDER/PLAYER

A thesis submitted to the faculty of
San Francisco State University

in partial fulfillment of the
requirements for the

degree

Master of Science
in

Computer Science

by

Gary Hoo

San Francisco, California

December, 1997

Copyright by
Gary Hoo

1997

CERTIFICATION OF APPROVAL

I certify that I have read An MBone Recorder/Player by Gary Hoo, and that in

my opinion this work meets the criteria for approving a thesis submitted in partial

fulfillment of the requirements for the degree: Master of Science in Computer

Science at San Francisco State University.

Jozo Dujmovic
Professor of Computer Science

Marguerite Murphy
Professor of Computer Science

William Johnston
Lecturer of Computer Science

AN MBONE RECORDER/PLAYER

Gary Hoo
San Francisco State University

1997

In the last five years, researchers have developed and deployed protocols

and applications that allow videoconferencing over the Internet using IP

multicast. The portions of the Internet that can communicate via IP multicast are

known collectively as the Multicast Backbone, or MBone. The MBone is now

routinely used for public lectures as well as private meetings.

As the MBone has grown, the number of available offerings (conferences,

public and private) has grown, and a need for tools to record and to replay

MBone conferences has arisen. This paper describes such a tool, the DPSS

Multimedia Recorder/Player (DMRP), which uses the Distributed-Parallel Storage

System (DPSS) as its storage device.

I certify that the Abstract is a correct representation of the content of this

thesis.

___ _______________
Thesis Committee Chair Date

ACKNOWLEDGEMENTS

First and foremost, my thanks to Bill Johnston. This work is the result of the

time at LBL that he made possible.

Jason Lee helped in more ways than either of us probably recalls, as a

sounding board for ideas, a troubleshooter during development stalls and bug

hunts, and even as a voice of sanity during rough times.

Thanks to Keith Beattie, Chris Brooks and John Taylor for suggestions,

insights, cautionary tales of technical and bureaucratic snafus, and most of all,

many hours of commiseration and encouragement.

The work described in this paper is supported by the U.S. Department of

Energy, Office of Energy Research, Office of Computational and Technology

Research, Mathematical, Information, and Computational Sciences Division

(http://www.er.doe.gov/production/octr/mics/) under contract

DE-AC03-76SF00098 with the University of California, and by DARPA,

Information Systems Technology Office (http://www.ito.darpa.mil/). This is

document LBNL-41145.
v

TABLE OF CONTENTS

List of Tables. viii

List of Figures .ix

List of Appendices. x

1 INTRODUCTION . 1

2 BACKGROUND . 4
2.1 Multicasting . 4

2.1.1 Multicasting on the Internet . 5
2.1.2 A New Protocol: RTP/RTCP . 8

2.1.2.1 Limitations of UDP and TCP . 8
2.1.2.2 RTP . 11
2.1.2.3 RTCP . 16
2.1.2.4 Protocol Customization . 24

2.1.3 Other Internet Conferencing Protocols . 25
2.1.4 Existing MBone applications . 32

2.2 The Distributed-Parallel Storage System . 35
2.2.1 Purpose . 35
2.2.2 Functionality . 36
2.2.3 Architecture and Client Use . 38

3 FUNCTIONALITY AND DESIGN ISSUES . 42
3.1 RTP/RTCP Packet Management . 42
3.2 DPSS Constraints . 43
3.3 Other Design Considerations . 45
3.4 Design . 46

4 IMPLEMENTATION AND ARCHITECTURE OF THE DMRP 49
4.1 Introduction . 49

4.1.1 C++ Terminology and Notation . 50
4.1.2 C++ Standard Template Library . 51
4.1.3 Threads . 52

4.2 DMRP Classes . 54
vi

4.2.1 Generic Networking Classes . 55
4.2.1.1 IPNetAP . 55
4.2.1.2 IPAddr . 57

4.2.2 RTP/RTCP State Management Classes . 57
4.2.2.1 RTPSource . 57
4.2.2.2 RTPSourceList . 59
4.2.2.3 RTPSession . 60

4.2.3 RTP Packet-Handling Classes . 61
4.2.3.1 RTPFormat . 61
4.2.3.2 Timer . 62
4.2.3.3 RTPHandler . 63
4.2.3.4 RTPDataHandler . 64
4.2.3.5 RTPCtrlHandler . 67

4.2.4 RTP/RTCP Protocol Management Class: RTPComm 73
4.2.5 DPSS Interface Class: DPSSPOC . 78
4.2.6 DMRP Session Management Class: SessionManager 83

4.2.6.1 Construction and Initialization . 83
4.2.6.2 Recording . 84
4.2.6.3 Automatic Suspension of Recording 87
4.2.6.4 Playback . 88
4.2.6.5 Shutdown . 91

4.2.7 Application Status Class: AppStatus . 92
4.3 Recorder . 95
4.4 Player . 102

5 PERFORMANCE AND SCALABILITY . 106

6 FUTURE WORK . 110

7 CONCLUSIONS . 115

REFERENCES . 117

APPENDICES. 122
vii

LIST OF TABLES

Table Page

1. RTCP Packet Types . 18

2. RTCP SDES Item Types . 22
viii

LIST OF FIGURES

Figure Page

1. RTP Fixed Packet Header . 13

2. RTCP Common Packet Header . 17

3. RTCP SR Packet . 19

4. RTCP SDES Packet . 21

5. RTCP SDES Item . 22

6. DMRP Packet Manager (conceptual design) . 43

7. DMRP design . 47

8. DMRP recorder and other MBone tools . 96

9. DMRP recorder (detail) . 97

10. DMRPSessionInfo structure . 98

11. DMRP player and client applications . 102

12. DMRP player (detail) . 103
ix

LIST OF APPENDICES

Appendix Page

A Testing Methodologies and Details . 122
A.1 DPSS Throughput Test Methodology . 122
A.2 DMRP Test Methodology . 124

B DMRP Source Code . 126
B.1 DMRP Shared Classes . 126

B.1.1 Networking Classes . 126
B.1.1.1 NetAddr . 126
B.1.1.2 IPAddr . 127
B.1.1.3 NetAP . 128
B.1.1.4 IPNetAP . 128

B.1.2 RTP/RTCP Classes . 129
B.1.2.1 RTPSource . 129
B.1.2.2 RTPSourceList . 132
B.1.2.3 RTPSession . 132
B.1.2.4 RTPFormat . 133
B.1.2.5 Timer . 134
B.1.2.6 RTPHandler . 136
B.1.2.7 RTPDataHandler . 137
B.1.2.8 RTPCtrlHandler . 138
B.1.2.9 RTPComm . 142

B.1.3 DPSS I/O Classes . 145
B.1.3.1 DPSSState . 145
B.1.3.2 StorageIOBase . 145
B.1.3.3 DPSSPOC . 145

B.1.4 SessionManager . 147
B.1.5 AppStatus . 150

B.2 DMRP common functions . 150
B.3 Recorder . 159

B.3.1 Common definitions . 159
B.3.2 listener.cc . 160
x

B.3.3 listener_utils.cc . 170
B.4 Player . 175

B.4.1 Common definitions . 175
B.4.2 player.cc . 176
B.4.3 player_utils.cc . 189
xi

CHAPTER I

INTRODUCTION

Videoconferencing—comprising audio, video, and possibly graphical data

such as slides—requires timely transmission of potentially large amounts of data

to and from multiple sources. One way—the most obvious way—to transfer the

data is via a transport infrastructure that provides explicit bandwidth and other

service guarantees, such as traditional telephone circuits. In such environments,

resources are set aside for the sole use of the conference members and for the

duration of the conference, guaranteeing that loss or delay because of bandwidth

contention (congestion) will not occur.

The Internet is a poor fit for this model of data transfer. Its main transport

protocols, TCP and UDP, provide neither timeliness guarantees nor resource

reservation. Congestion, while not inevitable, cannot be eliminated as a

possibility by end users because they cannot control intermediate resources, i.e.,

the nodes that forward the data between the users. And many-to-many

communication is expensive in bandwidth terms: it requires transmitting multiple

instances of the data, which exacerbates any existing congestion.

However, by relaxing what is actually required for videoconferencing, and by
1

2

adding a more efficient means of data distribution, Internet-based

videoconferencing has become a reality. The tools that receive data are

designed to compensate gracefully for delay and loss of data, so completely

reliable transmission is no longer necessary (although it is still desirable if it is

available). Many-to-many communication has been made efficient by the

addition of multicasting capabilities to the Internet protocol suite.

Today, a variety of tools exists to exchange multimedia information between

many parties in real time over the Internet. In particular, there are several widely

available applications, both free and commercial, that enable videoconferencing

using the Real-Time Transport Protocol (RTP) [34].

With the advent of these conferencing tools, the need has arisen for ancillary

utilities to record and to replay these conferences. Several such tools are being

or have been developed.

This paper describes the DPSS Multimedia Recorder/Player (DMRP), which

can capture data transmitted via one or more RTP sessions for later playback. It

uses the Distributed-Parallel Storage System (DPSS) [20] to store the data. The

combination of the DMRP and DPSS makes possible a scalable, robust archival

server for such multimedia data.

Chapter II provides background material on both the MBone (its history,

protocols, and practices) and the DPSS. Chapter III describes the DMRP’s

design, including the functionality required (and provided) by the DMRP and

3

some constraints that influenced that design. Chapter IV details the

implementation of the DMRP, including a description of the major classes

comprising it and a brief discussion of some non-obvious implementation

decisions (the use of threads and the Standard Template Library [36]) and the

reasons for them. Chapter V provides a brief performance analysis of the

finished software. Chapter VI outlines some of the improvements and

modifications that are planned for the DMRP. Finally, Chapter VII presents a

summary and concluding remarks.

CHAPTER II

BACKGROUND

Because they are still relatively new, Section II.1 reviews current multicasting

practices and protocols, with particular emphasis on the multicast transport of

multimedia data. Section II.2 discusses the general purpose, functionality, and

architecture of the DPSS.

II.1 Multicasting

Peer-to-peer communication in a computer network can be characterized

according to the scope of the intended audience. Unicasting denotes the

transmission of data from one computer to a single recipient on a network.

Broadcasting denotes the transmission of data from one computer to all

computers on a network. Multicasting denotes the transmission of data from one

computer to a subset of all the computers on a network.

Multicasting fills a critical gap between unicasting and broadcasting. It makes

more effective use of network bandwidth than unicasting by eliminating the need

to duplicate data for each recipient; in fact, multicasting permits data distribution

in parallel to a much larger number of recipients than is physically possible via
4

5

unicasting. At the same time, multicasting permits more discrimination than

broadcasting, in principle allowing end nodes to avoid processing data not

intended for them.

II.1.1 Multicasting on the Internet

The Internet Protocol (IP) [31] did not originally provide support for multicast.

However, in 1989 Steve Deering, then of Stanford University, proposed a set of

modifications to IP to allow multicast [6]. The changes were designed to allow

implementations that included support for IP multicast to interoperate with

implementations lacking the modifications.

Under IP multicast, class D IP addresses comprising the address range

224.0.0.0 - 239.255.255.255 are reserved for identifying host groups, "a set of

zero or more hosts identified by a single IP destination address" ([6], 1). Hosts

send data to a host group by setting the destination address of their IP

datagrams to the appropriate class D address, and similarly receive data by

accepting datagrams sent to that address. Forwarding of IP multicast datagrams

is handled by multicast routers.1 Receiving hosts use the Internet Group

Management Protocol (IGMP) [8] to indicate to the nearest multicast router their

1. References to "routers" in the following discussion should be understood
to mean "multicast routers" unless stated otherwise.

6

desire to join host groups and so to receive the traffic destined for those groups.2

(IP multicast is designed so that a host need not join a host group to send data to

that group.)

Broadly, IGMP requires a would-be receiver to signify its desire to receive

traffic destined for a particular host group to the nearest multicast router. Once a

router has been advised that any host on a connected local network wishes to

receive a host group's traffic, the router forwards that traffic to the local network.

The router periodically sends a query to all hosts on the local network, requesting

that the hosts report which host groups they are (still) interested in receiving. As

long as any host reports its interest in a host group, the router continues to

forward the group's traffic to the local network. If no host expresses such an

interest, the traffic is not so forwarded.

IP multicast is scalable and dynamic because it places the responsibility for

group membership on the receiver and the multicast routers; no host—including

the sender—need keep information as to the location, or even the existence, of

other participants. Multicast routers need not know which hosts on a connected

local network are participating in a host group, but only that at least one host is.

Furthermore, no matter how many hosts on a local network are members of a

2. Multicast routers do not use IGMP to direct multicast traffic between one
another: they use one of several multicast routing protocols which will not
be discussed in this document.

7

host group, only one copy of each datagram belonging to the group will be

forwarded to the network by the router. Finally, a sender need transmit only one

instance of its data, no matter how many receivers there are. Final delivery of

data is via broadcast on a LAN, e.g., Ethernet, or multicast if supported by the

end host’s subnet (e.g., on an ATM network).

The collection of IP multicast-enabled hosts connected by multicast routers

and virtual point-to-point tunnels over non-multicast-enabled portions of the

Internet is called the IP Multicast Backbone, or MBone [7]. Eventually, as

support for IP multicast becomes ubiquitous, the MBone will cease to be a

distinct subset of the Internet.

Note that IP multicast only provides the barest essentials for communication;

like unicast IP, IP multicast requires higher-level protocols to be useful to

applications. These protocols must address not only problems analogous to

those addressed by non-multicast protocols, such as reliable end-to-end delivery,

but also issues pertinent to multicast in general, such as the monitoring of group

membership, and issues relevant to IP multicast in particular, such as the

apportioning of scarce resources (i.e., IP multicast addresses). RTP, discussed

in Section II.1.2, provides multicast data transmission services to applications

that can survive some unreliability, including misordering of data. Other

protocols, discussed in Section II.1.3, address a different subset of the

higher-level protocol issues: they attempt to impose some order and meaning to

8

host groups by associating information with them and disseminating the

information as needed. These protocols are critical to the deployment of session

directories, which are tools that provide meaningful descriptions of how host

groups are currently being used—e.g., "224.2.153.144, port 43654 is being used

for H.261 video data exchange by the NASA Space Shuttle program"—and which

provide enough data to enable a user to join the host group using an appropriate

tool for the data being exchanged. Yet another set of protocols, also discussed

in Section II.1.3, are intended to govern the actual performance of multimedia

data transmission, allowing control of data rates and dynamic, high-level

coordination of sets of multimedia data streams.

II.1.2 A New Protocol: RTP/RTCP

II.1.2.1 Limitations of UDP and TCP

By itself, IP multicast is insufficient to support end-to-end data transport. As

with any IP datagrams, IP multicast datagrams may be lost or may arrive out of

order [6]. Thus for IP multicast to be useful, some higher-level protocol must

supply the necessary error detection—and if necessary, error compensation—

facilities. In addition, the higher-level protocol should support multiplexing of

distinct multicast sessions between two or more hosts, and possibly support

some organization of the data (e.g., by partitioning it into frames or segments).

UDP and TCP, the most widely used transport-level protocols operating over

9

IP, were designed to facilitate, respectively, message- and stream-oriented data

transfers over a network or internetwork. UDP offers applications multiplexing

(i.e., the use of multiple, distinguishable communication endpoints ("ports") on a

single host) and some data integrity checking (error detection), while TCP

provides reliable, ordered delivery (including error correction) in addition to

multiplexing and integrity checking. Both protocols impose some organization on

the data they transport: UDP packages data in datagrams, while TCP treats data

as ordered streams of bytes.

TCP, however, is designed for unicast communication. It establishes a

duplex connection between two and only two hosts: its connection establishment,

error detection and error correction algorithms are designed around this duplex

communication. TCP would have to be drastically modified to support

simultaneous communication between more than two hosts.

Lacking TCP's extensive error correction mechanisms, UDP might seem an

appropriate candidate for an IP multicast transport protocol. However, UDP does

not itself provide enough information to determine whether datagrams are

missing.

If IP multicast is to be used to deliver real-time data like video, the

higher-level protocol must provide the necessary mechanisms to ensure that the

receiver can present the data as the sender intended in time (i.e., it must provide

synchronization mechanisms). It is important, for instance, to present video to an

10
end user at the correct frame rate, just as it is important to preserve the pauses

in speech since they may signify as much as the words. Neither TCP nor UDP

preserves this data-based timing.

Human beings can tolerate some degree of loss in an audio or video stream:

moviegoers, for example, endure splices in film reels without significant loss of

understanding. Complete reliability, therefore, is not required, only the ability to

detect loss. However, TCP does not allow reliability to be sacrificed, while UDP

has no way of detecting loss.

The Real-time Transport Protocol (RTP) [34] is a stream-oriented,

application-level datagram protocol. Together with the RTP Control Protocol

(RTCP), RTP provides enough information for a receiver to reconstruct the

stream, or to detect gaps within the stream.3 RTP and RTCP also provide

enough information to calculate the rate at which the datagrams were sent.

However, they deliberately do not define a mechanism to compensate for lost

data: the designers believed that application developers might wish to use

various strategies to recover from errors.

Although RTP and RTCP were designed to support "multi-participant

multimedia conferences" ([34], 3), the protocol is not explicitly limited to such

3. "RTP" is often used to denote both the data transport protocol and the
combination of RTP and RTCP, with the meaning being clear from con-
text. In this paper, where ambiguity may exist, both protocols are explic-
itly mentioned.

11
applications. However, when discussing RTP/RTCP usage below, examples will

be in the context of such conferences.

It should be noted that RTP/RTCP provides neither traditional port-based

multiplexing (as used by UDP and TCP) nor data integrity checking, relying on an

underlying protocol for these services. The protocol’s designers envisioned that

UDP would be used for this purpose, although any equivalent protocol could be

used. RTP does require multiplexing of a different sort, however: each data

source in a host group must distinguish itself using a unique identifier, the SSRC

ID (see Section II.1.2.2).

RTP and RTCP were designed to provide a minimal common basis for

real-time communication between a variety of applications while allowing those

applications the flexibility to choose how, or whether, to enhance the basic set of

offered services.

In this paper, the protocol specification for RTP/RTCP is sometimes referred

to as "RFC 1889," the identifier assigned to it by the standards body that issued

the specification.

II.1.2.2 RTP

RTP facilitates the dissemination of real-time data in a multicast group by

providing key services that IP multicast lacks. It identifies and distinguishes

session members, and timestamps data so receivers can reconstruct a sender’s

12
data stream in time as well as space.

An RTP session, in terms of IP multicast,4 embodies all participants

communicating via a particular multicast address and pair of port numbers (one

for RTP, the other for RTCP). In a multimedia conference, each medium typically

warrants its own session; thus audio and video data are carried in different RTP

sessions. (Discussion is under way as to how mixed-media encodings—those

that carry both audio and video, for example—should be treated by the protocol.)

Central to RTP is the concept of the synchronization source. A

synchronization source (SSRC) is the origin of a stream of RTP data packets and

defines both the ordering and the timing of the data stream it transmits. Each

audio or video source in an RTP session, for example, would be a separate

SSRC. Since in a typical multicast group any participant may be a data source,

every participant usually is considered an SSRC. Each SSRC must uniquely

identify itself in a session by choosing a random synchronization source ID. The

SSRC ID allows receivers to associate packets, arriving in random order, with the

streams of which they are a part. Note that using packets’ source addresses to

multiplex between sources is inadequate, since a single host may originate

multiple streams.

An SSRC need not be a source of raw data, such as the input from a

4. The term has a slightly different meaning if RTP and RTCP are used for
unicast.

13
microphone or camera: it may also be an application that filters an existing RTP

data stream or combines several such data streams in some way. The input to

such an application, known as a mixer, might require timing adjustments before

the data could be retransmitted. The mixer would then be the (new) data

stream's synchronization source, because the timing and sequence of the data

would no longer reflect that of the original data sources, or contributing sources

(CSRCs). A mixer identifies the CSRCs whose packets it is filtering so that a

receiver may correctly attribute the packets’ originators.

RTP segments a raw data stream into packets and prepends a 12-byte fixed

header of protocol information (see Figure 1) followed by zero or more

contributing source identifiers and possibly one header extension. (Header

Figure 1. RTP Fixed Packet Header

RTP TS

SSRC ID

SEQPTMXPV CC

14
extensions are beyond the scope of this discussion.)

The V field (version; 2 bits) indicates the protocol version number; the current

version is 2.5 The P field (padding; 1 bit) indicates whether the packet contains

padding following the payload, while the X (extension) bit, if set, indicates that the

fixed header is followed by one header extension. (Padding, like header

extensions, is not relevant to this brief discussion of the protocol: the DMRP

treats both opaquely.) The CC field (CSRC count, 4 bits) is the number of 32-bit

contributing source identifiers that follow the fixed header; zero is a valid count.

The M field (marker; usually one bit) is interpreted according to the profile6

under which the application is operating (see Section II.1.2.4); generally, it marks

"significant events such as frame boundaries . . . in the packet stream" ([34], 11).

The PT field (payload type; usually 7 bits) tells an application what kind of data

are in the packet; the interpretation of the RTP timestamp varies according to the

payload type. The size and permitted values of each field may vary depending

on the profile, but together they are constrained to occupy only one octet.

The SEQ field (sequence number; 16 bits) identifies the order in which the

packets were transmitted. It increments by one for each RTP data packet sent.

5. RTP version 0 (RTPv0) was used by one of the earliest MBone applica-
tions, vat. RTPv1 was an experimental version that was not widely
deployed.

6. A profile is one set of RTP parameters typically agreed upon for transport
of a particular medium or media, e.g., CD quality audio.

15
RTP does not ensure in-order presentation of packets, so the sequence number

allows an application to detect an out-of-order packet. A transmitter’s initial SEQ

value is randomly chosen to enhance encryption security, although the protocol

does not require the use of encryption.

Because the SEQ field only comprises 16 bits, it can only take on 65,536

unique values. During a long-lived RTP session, it is likely that more than this

number of packets will be transmitted by a continually sending source, so the

source must reuse sequence numbers. The protocol specification requires that

session members note each time the SEQ has wrapped around, i.e., used all

65,536 values; each such sequence number wrap is called a cycle.

The RTP TS field (RTP timestamp; 32 bits) "reflects the sampling instant of

the first octet in the RTP data packet" ([34], 11). The RTP timestamp does not

represent the actual or wallclock time: rather, it represents the passage of time

on a logical clock. How this timestamp corresponds to wallclock time is

format-dependent (see Section II.1.2.4). Receivers use the timestamps to

synchronize presentation of data to the user, reproducing the playout rate of the

source. Like the SEQ, the initial value of the RTP TS is randomly chosen.

The SSRC ID field (32 bits) is the SSRC’s randomly chosen identifier for the

duration of the RTP session. Each SSRC ID must be unique during a session: if

two SSRCs choose the same SSRC ID, one or both must select a new ID. An

16
SSRC must also change its SSRC ID if it changes its source transport address.

If the packet was generated by a mixer, the CSRC IDs follow the SSRC ID

field.

The structure of the RTP fixed packet header does not vary across profiles

(see Section II.1.2.4) or for different payload types governed by a profile.

II.1.2.3 RTCP

According to RFC 1889, RTCP performs three main functions:

1. It provides "feedback on the quality of the data distribution." This

feedback can be used by other participants (e.g., a sender might

choose to reduce its bandwidth because of poor reception by other

members of the session) or by third-party monitors that may act on that

information (e.g., a network provider might elect to change bandwidth

constraints for a session).

2. It carries an RTP source's canonical name, which is a persistent

identifier for the source, unlike the SSRC ID which may change during

the course of a session. The canonical name allows receivers to

associate a meaningful identifier with a source, especially between

concurrent sessions. This cross-session persistence permits

association between different media, with the foremost example being

synchronized audio and video.

17
3. Because every session participant must send RTCP packets,

participants can determine the total number of session members

dynamically. The number of session members is one parameter

determining the RTCP packet transmission rate, which must be

controlled to allow RTP/RTCP to scale to a large number of

participants. Hence RTCP contributes to adjusting its own

performance.7

The structure of the first four bytes (32 bits) present in all RTCP packet

headers is shown in Figure 2.

The V and P fields are the same size and have the same meaning as the

fields of the same name in the RTP data packet header, and V currently also has

the same value, 2.

The C field (count; 5 bits) is a count of subsequent items in the packet.

Different RTCP packet types carry blocks of per-source data; C indicates how

many such blocks are part of the packet, i.e., how many sources are being

7. RTCP can also "convey minimal session control information." However,
it is more common to convey this information via the protocols discussed
in Section II.1.3.

Figure 2. RTCP Common Packet Header

LENPTPV C LENPTPV C

18
reported on in this packet. (For one type of RTCP packet—the APP packet—the

C field is called the subtype field and may be used in an application-specific way

rather than as a count. The field is the same size in either case.)

The PT field (packet type; 8 bits) denotes the packet’s type; there are five

types (see Table 1). The LEN field (length; 16 bits) gives the RTCP packet’s

length in 32-bit words minus one, including the header and any padding.

Defining LEN in this way provides for slightly greater efficiency during packet

validation and avoids a possible infinite-loop error when scanning compound

packets; see RFC 1889 for details.

Table 1 shows the five types of RTCP packets and the value of the PT field

for each.

Sender report (SR) packets are sent only if the session member transmitted

Table 1. RTCP Packet Types

Packet Type Abbrev PT value

Sender report SR 200

Receiver report RR 201

Source description SDES 202

Goodbye BYE 203

Application-defined APP 204

19
data since its last or next to last report (either SR or RR). The structure of an SR

packet is shown in Figure 3.

Following the RTCP common header are the sender’s SSRC ID (32 bits) and

20 octets (five 32-bit words) of sender-specific information (shaded in Figure 3),

the most important of which for this discussion are the NTP and RTP

timestamps. The NTP (Network Time Protocol) [27] timestamp represents the

wallclock time at which the SR was sent, while the RTP timestamp is the

representation of the NTP timestamp in the same units as the RTP data

Figure 3. RTCP SR Packet

LENPTPV RC

Sender’s SSRC ID

NTP TS (MSW)

NTP TS (LSW)

RTP TS

Sender’s packet count

Sender’s octet count

SSRC_1 (first source’s SSRC ID)

Cumulative no. of lost packets

Extended highest sequence no. seen

Interarrival jitter

Last SR (LSR)

Delay since last SR (DLSR)

Fraction lost

SSRC_2 (second source’s SSRC ID)

profile-specific extensions

...

20
timestamp. The two timestamps allow inter-media synchronization for SSRCs

whose timekeeping is coordinated by NTP. The NTP timestamp is represented

as two 32-bit words, with the most significant word (MSW) preceding the least

significant word (LSW) in the header.

Zero or more reception reports follow the sender-specific data. Each

represents an SSRC from which the sender received data since transmitting its

prior SR or RR. A reception report includes, inter alia, the fraction of packets lost

since the last report, the highest sequence number received, an estimate of the

variance in data packet interarrival times (interarrival jitter), and the delay since

the last SR from the SSRC. The C field in the RTCP common header is defined

as the reception report count (RC) for the SR (and RR, below).

Finally, an SR may contain a profile-specific extension, discussion of which is

beyond the scope of this overview of the protocol.

Receiver report (RR) packets are identical to SR packets except that they do

not contain the 20-octet block of sender-specific information, and their PT field is

set to 201.

Source description (SDES) packets convey identifying information for the

21
named packet source(s). The structure of an SDES packet is shown in Figure 4.

SDES packets consist of the RTCP fixed header (with a value of 202 for the

PT field) followed by zero or more units known as chunks which in turn each

consist of an SSRC ID (or a CSRC ID if the reporter is a mixer) and one or more

SDES items. An SDES item is made up of a type, a length, and data, as shown

Figure 4. RTCP SDES Packet

LENPTPV RC

SSRC_1/CSRC_1 (first source’s SSRC ID)

SDES items

SSRC_2/CSRC_2 (second source’s SSRC ID)

SDES items

...

22
in Figure 5.

SDES item types are listed in Table 2.

The LEN field (item length; 8 bits) in an SDES item indicates the size of the

data in octets, not including the two octets of the item type and LEN fields.

Within a chunk, items are "stacked" contiguously and are not required to end on

32-bit boundaries. However, each chunk as a whole must begin and end on a

32-bit boundary so there may be one or more null octets after the last item in a

Table 2. RTCP SDES Item Types

Item Type Value

CNAME 1

NAME 2

EMAIL 3

PHONE 4

LOC 5

TOOL 6

NOTE 7

PRIV 8

Figure 5. RTCP SDES Item

TYPE LEN TEXT

23
chunk. The DMRP, like most existing MBone applications, encodes SDES item

data in US-ASCII format.

From the standpoint of a quick survey of the protocol, the most important

SDES item type is the CNAME. SDES CNAME chunks carry the source’s

canonical end-point identifier, which is a unique identifier for a source within a

session that, unlike an SSRC ID, is guaranteed to remain constant for the

session’s duration. One of its intended uses is as a means of cross-media

synchronization, which implies that the CNAME should be fixed across multiple

related RTP sessions. The protocol specification strongly recommends that the

CNAME be derived algorithmically (i.e., automatically) and should take the form

"user@host". At minimum, an SDES packet must carry the sender’s CNAME,

and the CNAME is the only SDES item type that all RTP/RTCP applications must

support.

The TOOL item allows an application to identify itself to other session

participants. Current tools often include version identification information as well.

The RTCP common header’s C field is defined as the source count (SC) for

an SDES packet and denotes the number of chunks in the packet.

Goodbye (BYE) packets indicate that a source is no longer active, i.e., that it

has left the RTP session. Application-defined (APP) packets are for

experimental use: they obviate the need to register new RTCP packet types

while the new types’ utility is being tested. Neither of these is important to

24
understanding RTP/RTCP in the context of the DMRP, so they will not be

discussed further.

RTCP is designed to scale to large sessions without overwhelming either the

associated RTP data traffic or the available network bandwidth. To reduce the

protocol's overhead, several RTCP packets are combined into a single

compound packet before being sent. More importantly, the frequency of a

source’s RTCP packet transmission is limited so that the aggregate rate of all

members’ RTCP traffic consumes no more than a small fraction of the bandwidth

available to a given RTP session, with the suggested fraction being 5%.

Whatever the value, however, it must be fixed for a given profile (see Section

II.1.2.4), as each participant independently calculates its RTCP inter-packet

transmission interval based on the available RTCP bandwidth.

The share of the bandwidth allotted to a given participant, together with the

average amount of data in an RTCP packet, determine the average interval

between that participant's RTCP packets. As more sites join an RTP session

each site must send RTCP packets less often, assuming that the session's total

available bandwidth does not change.

II.1.2.4 Protocol Customization

RFC 1889 does not completely specify RTP and RTCP in the same way as

their respective RFCs specify, e.g., TCP or IP. The protocols' designers

25
envisioned that RTP/RTCP would be implemented within applications rather than

as separate modules or libraries, using the requirements of RFC 1889 as a basis

for minimal interoperability.

A complete specification of the protocols must include a profile and payload

format specifications. A profile characterizes an entire class of applications;

among other things, a profile corresponds payload type identifiers to payload

formats and, for each payload type, defines the RTP timestamp clock rate to be

used. Most existing RTP-based tools operate under the profile for audio and

video applications, RFC 1890 [33]. A payload format specification describes how

a particular kind of data format is to be carried by RTP. There are payload

specification documents for various audio and video formats such as H.261 [40],

JPEG video [1], MPEG1/MPEG2 video [16], and redundant audio [29].

II.1.3 Other Internet Conferencing Protocols

RTP and IP multicast are components of what is an emerging set of protocols

to provide multimedia conferencing over the Internet; collectively, these protocols

have been dubbed "the Internet Multimedia Conferencing Architecture" by the

Internet Engineering Task Force (IETF) [13], which has been developing them.

The conferencing architecture’s protocols fall into two categories, conference

management and data distribution. RTP is an example of an unreliable

distribution protocol; the IETF’s model also encompasses reliable (multicast)

26
protocols such as SRM (see Section II.1.4).

Conference management protocols are concerned with the setup and

high-level control of presentations. For this discussion, a presentation or

conference is a "set of one or more streams presented to the client as a complete

media feed," where a stream is a "single media instance, e.g., an audio stream or

a video stream as well as a single whiteboard or shared application group" [35];

an RTP session as defined in Section II.1.2.2 is thus an instance of a stream. In

the IETF architecture, conference management decomposes into conference

setup and discovery, and conference course control (i.e., managing the

bandwidth and possibly the membership of a presentation). While RTCP can be

used for limited conference course control—this is a fourth, optional function

according to RFC 1889—more sophisticated protocols are being developed

specifically for this purpose.

For a limited number of participants, conferences can probably be arranged

by email or telephone. However, such informal methods clearly do not scale to a

large number of participants, nor to conferences whose participants cannot be

known in advance. Conference setup and discovery protocols address the

problem of creating, describing, and finding presentations. These protocols fall

into two domains. The description of a presentation—which can be considered

the aggregate of the descriptions of the constituent media—is logically distinct

from the mechanism by which that description is made available to potential

27
receivers.

The Session Description Protocol (SDP) [14] encodes all the relevant

information about a presentation, where "all the relevant information" means that

SDP provides enough information for a receiver to participate in the

presentation.8 SDP includes both presentation-wide parameters, e.g., the

presentation’s name, and media-specific parameters such as the media type

(audio, video, etc.) and address/port(s). For maximum flexibility in handling, SDP

data are entirely textual, with US-ASCII being a subset of the accepted encoding

scheme.

SDP describes a presentation, but does not attend to the other half of

conference setup and discovery, the distribution of the information. The IETF, in

an overview of its proposed conferencing architecture [13], notes four protocols

by which SDP data may be disseminated. Two of these, the Hypertext Transfer

Protocol (HTTP) [9] and the Simple Mail Transfer Protocol (SMTP) [32] are well

known and in wide use on the Internet for exchanging much more than

conference information, so they will not be discussed here. The Session

8. The IETF protocol documents use "session" inconsistently. The confer-
ence control protocols such as SDP, SAP and SIP use "session" to
denote what was defined as a "presentation" above, while RTP/RTCP
defines a "session" in terms of an address and port number pair associ-
ated with a single medium. In this discussion, "session" will always have
the RTP/RTCP meaning, and "presentation" will be used to describe a
set of multiple sessions. Following this usage, SDP, for example, would
more properly be called the "Presentation Description Protocol."

28
Announcement Protocol (SAP) [12] and Session Initiation Protocol (SIP) [15] are

specifically designed to carry presentation information. SAP and SIP represent

two different distribution styles: "announcement" and "invitation."

SAP multicasts SDP-encoded packets to well-known multicast addresses and

ports. SAP permits an organization to restrict SAP packets to arbitrarily defined

administrative domains by choosing particular local addresses, a practice known

as administrative scoping, or to use a reserved address and port for more

generally accessible time-to-live scoped announcements (see below). The use

of well-known addresses and ports (whether administratively scoped or not)

permits the implementation of distributed directory tools—the session directories

mentioned in Section II.1.1—that list presentations announced via SAP; the

best-known such tool is sdr (see Section II.1.4). SAP allows anyone to discover

a presentation and, via SDP, provides enough information to join it.

A time-to-live (TTL) mechanism determines the range of the packets’

distribution. All IP packets contain a TTL field which is decremented (by one) by

each router through which the packet passes; a packet with a TTL of zero is

destroyed, preventing it from circulating indefinitely. In addition, a multicast

router compares each packet’s TTL to a threshold value. Each multicast router

interface and tunnel is configured with such a threshold, which denotes the

minimum TTL that a packet must possess to be forwarded through the interface

or tunnel. Proper use of TTLs is necessary to ensure that SAP, RTP/RTCP, and

29
other multicast protocols can scale to large numbers of presentations, as the

traffic of non-global presentations (e.g., a high-bandwidth video conference within

an organization) must not be allowed to congest network links outside the

presentations’ intended scope. TTL-scoped SAP packets are assigned the same

time-to-live value as the presentations they advertise.

SAP is analogous to an advertisement that invites the public at large to attend

a meeting (although SAP announcements can be encrypted so that only specific

parties can decode them and participate in the announced conference). SIP, in

contrast, provides a means to invite select parties to a presentation in a manner

reminiscent of a telephone conference call. SIP is a complex protocol that

supports "some or all of four facets of establishing multimedia communications"

[15]: (1) locating the invitee, (2) negotiating what media and media parameters

are possible and appropriate for the invitee, (3) determining whether or not the

invitee wants to join the presentation, and (4) establishing the "call parameters"

of both the inviter and invitee, as a prelude to the invitee’s actually joining the

conference. Like SAP, SIP typically will use SDP to encode the presentation

information.

What the IETF terms "conference course control" [13] at present refers to

quality of service (QoS) guarantees and dynamic control of active presentations.

QoS guarantees (e.g., loss rate) are handled by the Resource ReSerVation

Protocol (RSVP) [2]. RSVP is used "to request specific qualities of service from

30
the network for particular data streams or flows," as well as "to deliver [QoS]

requests to all nodes along the path(s) of the flows and to establish and maintain

state to provide the requested service" ([2], 4). RSVP is intended to be used in

both routers and end hosts. Like IGMP (Section II.1.1), RSVP is

receiver-oriented: receivers must issue RSVP requests, rather than senders.

This permits RSVP both to scale to potentially large numbers of receivers, and to

adapt to group membership changes.

RSVP requests propagate along the same path that data will take from the

sender to the receiver, but in the opposite direction. At each intermediate node,

RSVP causes sufficient resources to be allocated for the QoS and bandwidth

requested if possible. If insufficient resources are available, or if the requester is

not authorized to obtain the resources, an error is returned to the requester. By

default, a failure to obtain resources at a node does not release resources

successfully allocated at other nodes closer to the receiver, however, because

the receiver may be willing to settle for having the desired QoS along as much of

the path as possible.

All of the conference management protocols described so far operate prior to

the start of the presentation; even RSVP, which affects the presentation’s

delivery to receivers, performs the bulk of its work before any data are

transmitted. The Real Time Streaming Protocol (RTSP) [35] functions as a

control protocol for continuous media streams (e.g., audio and video) while the

31
presentation is active. RTSP has three functions: (1) it can initiate retrieval of

streams from a media server, (2) it can "invite" a media server to join an existing

presentation, and (3) it can notify a receiver of the existence of newly available

media (e.g., a media server can notify receivers that a new video source is

available, perhaps corresponding to a new conference participant) for an

existing, usually live, presentation. A media server is defined as a "network entity

providing playback or recording services for one or more media streams" ([35],

8). Thus the first two functions explicitly apply to media recording and playback

devices, making RTSP "a ’network remote control’ [protocol] for multimedia

servers" ([35], 5). RTSP defines traditional VCR-like commands such as "PLAY,"

"PAUSE," and "RECORD" that control the allocation and usage of resources on a

server.

It should be noted that none of the conference management protocols

described, including RTP/RTCP, requires the use of any of the other protocols,

although they are designed to interoperate when available. The DMRP does not

use any of the protocols except RTP/RTCP, although it does indirectly take

advantage of SDP-encoded presentation descriptions made available via sdr;

see the discussion of the DMRP’s configuration file in Section IV.3.

Finally, the IETF also acknowledges [13] the need to control the allocation of

IP multicast addresses and ports to avoid collisions between presentations.

However, no consensus has been reached on the proper means of doing so.

32
One suggestion [15] is for address allocation to be managed by SAP, but others

argue that where appropriate, "[the] media server [should pick] the multicast

address and port" [35]. In practice, most if not all advertised presentations

appear to have their address(es) and ports chosen by sdr, described in Section

II.1.4, via a mechanism that is not yet documented in any IETF specification.

II.1.4 Existing MBone applications

A number of RTP-based conferencing tools are in use on the MBone to

communicate audio, video, ASCII text, and PostScript (R), among other data

formats. In addition, there is a VCR-like tool for recording and playback of

conferences as well as a session directory tool.

The best-known applications for audio conferencing are the Visual Audio Tool

(vat) [28] and the Robust-Audio Tool (rat) [23]. Both vat and rat establish or join

an RTP session for audio traffic. A user can monitor session membership, adjust

the volume of sent and received audio, and control the rate at which his own

audio is sent, all via graphical interfaces.

vat's existence actually predates RTP: in fact, vat's original communication

protocol was the basis for the first version of RTP, RTPv0. vat has evolved to

become a useful multicast network debugging tool as well as a conferencing tool

since a user can monitor several important RTP traffic statistics in real time. rat,

perhaps in the interest of minimizing confusion for the novice user, eschews most

33
of vat's diagnostic options.

vat's video complement is the Video Conferencing Tool (vic) [26]. vic

establishes or joins an RTP session for video traffic. As with vat, a user can

extensively control and adjust vic's behavior, including the data transmission rate

and image quality. Also like vat, vic allows the user to monitor RTP traffic

statistics and session membership in real time.

The whiteboard tool (wb) [25, 10] allows conferees to share and to modify

whiteboard-like images; wb can thus serve as a distributed notepad during a

conference or as a viewgraph viewer during a lecture. The images can be

divided into pages, each of which can be created or drawn upon by any session

member. A member's wb drawings generate messages called drawops. Each

drawop is timestamped and assigned a sequence number; together with the

member's identifier, these ensure that every drawing is uniquely named and

ordered within the context of that member's data stream. The drawops are

multicast to the entire session.

wb differs from other MBone tools because it requires a reliable multicast

communication protocol: it cannot tolerate data loss. wb implements such a

protocol, dubbed Scalable Reliable Multicast (SRM) [10]. SRM's error recovery

is receiver-driven, requiring receivers explicitly to request retransmission of

missing data. However, any member of the session—e.g., one that is "close" to

the requester—may respond to such a request, not just the original sender. SRM

34
includes mechanisms to reduce the likelihood of redundant requests and

responses that accompanies such a flexible recovery policy. Because these

mechanisms introduce some delay, SRM is probably not well suited to all, or

perhaps any, contexts in which RTP is currently used. (It should be noted that

SRM is a separate protocol from RTP.)

The MBone VCR [17] serves the same purposes for MBone sessions as a

conventional VCR serves for broadcast television. It can record one or more

RTP sessions, saving them to files on the local filesystem, and can later replay

the data as MBone sessions. It can be given a configuration file describing the

sessions and a separate command file controlling when it starts recording or

replaying, thus allowing automated use. (The DMRP accepts the same

configuration file format; see Section IV.3.)

sdr is a session directory of the type described in Section II.1.1. It

disseminates announcements of MBone conferences, allowing prospective

participants to learn about conferences that may interest them. Conference

organizers register their desire to transmit one or more RTP sessions, specifying

how many media sessions are needed, the payload format for each, and other

relevant information, including a human-readable description. sdr encodes the

presentation information via SDP and promulgates it using SAP; it receives,

decodes, and displays SDP messages from remote sdr instances for the user;

and it can launch the appropriate MBone conferencing tools for a multimedia

35
session if they can be found.

The foregoing is meant to illustrate the types of tools that are in common use

on the MBone. Other applications exist or are under development, but an

exhaustive survey of MBone-related software is beyond the scope of this paper.

II.2 The Distributed-Parallel Storage System

II.2.1 Purpose

The Distributed-Parallel Storage System (DPSS) was created to serve

applications requiring high-speed access to very large data sets via

high-bandwidth data streams. The assumptions underlying the DPSS' existence

are first, that the data of interest cannot readily be accommodated, even

temporarily, within disk space and memory locally available to the client; and

second, that the client requires high-speed, perhaps near-real-time, access to the

data. Moreover, because the connotation of "very large" is subject to change

over time, the DPSS is intended to scale to accommodate nearly arbitrarily large

data sets.

The prototype DPSS client application, TerraVision [24], uses data sets that

are on the order of 1-10 GB in size. The data represent terrain imagery which

TerraVision renders and displays in response to user actions. The user thus

appears to be navigating through the terrain in three dimensions in real time. To

create such a realistic dynamic visualization, TerraVision requires 300-400 Mb/s

36
of data.9

In principle, the DPSS can be modified to support multiple lower-bandwidth

data streams whose aggregate bandwidth is on the order of a single TerraVision

data stream. Thus, a DPSS potentially could support dozens or hundreds of

MBone media streams.

The DPSS is discussed in more detail in [20], [21], and [39].

II.2.2 Functionality

At heart, the DPSS is a network-based block server cache. The unit of data

exchange between clients and the DPSS is a block; any other granularity

required (e.g., obtaining a particular byte within a block, or aggregating multiple

blocks as a single data element) is the responsibility of the client application.

Blocks are organized at two levels. A data set is a logically associated

collection of blocks representing a distinct logical name space. The DPSS

assigns to each data set a unique set ID. Within a data set, each block has a

unique logical block name. An individual block on the DPSS is thus completely

identified by its set ID and logical block name.

The DPSS achieves high-bandwidth data streaming by exploiting the

parallelism available via multiple disk servers, each operating multiple disks and

9. TerraVision cannot absorb data at that rate due to limitations in the ren-
dering hardware on the SGI Onyx computer on which it has been run.
To date, TerraVision has been able to absorb a maximum of 80 Mb/s.

37
attached to a high-bandwidth network. A client's requests for data are broken

down into requests for individual blocks which were distributed among the DPSS

hosts during loading (see below for more details on data loading). Multiple block

requests can thus be satisfied in parallel by multiple disks on multiple hosts

seeking and reading simultaneously. As soon as a block is available, it is

delivered to the client. On a high-bandwidth network, multiple blocks can be sent

simultaneously. Although blocks may—indeed, likely will—arrive out of order,

each is "tagged" with its set ID and logical block name, allowing the client to

determine what to do with the block.

To date, DPSS clients have been designed to request multiple blocks at a

time, each of which can to some extent be operated on independently, and this

has influenced the evolution of the DPSS. Most of the target data have been

imagery, with the most prominent being the terrain visualization data used by

TerraVision and the cardioangiography "films" used by the prototype medical

imaging application vplayer [38]. However, there is no inherent design or

implementation bias in favor of image data: the DPSS is intended to

accommodate any large data collections, and more recently it has been

proposed as a component for caching high-energy physics data [11] and as a

general-purpose staging cache for a high-performance storage system. Each

application has its own strategy for coping with out-of-order data. In presenting

the data to a user, TerraVision "fills in" the screen as each block arrives, while

38
vplayer buffers blocks until a complete frame of the film is available. Neither

application relies on in-order delivery, nor could either application present its data

usefully if forced to wait for blocks to be delivered sequentially.

II.2.3 Architecture and Client Use

A DPSS is composed of multiple low-cost, medium-speed Unix workstations,

each of which typically has multiple disks and at least one high-speed network

interface attached.

Each workstation runs two types of DPSS software. The disk server is a Unix

daemon that manages both reading from all the disks on a host as well as writing

data to the network (i.e., to a client). It also establishes and maintains a cache in

memory of recently-requested blocks. The scribe is a Unix daemon that writes

data to a single disk on a single host. A single workstation may have multiple

scribes running, but only one disk server.

One host in a DPSS is designated the master. The master loosely

coordinates the activities of the disk servers: it presents lists of requested blocks

for the servers to process and it maintains much of the DPSS' global state. The

master is also the initial point of contact for clients and manages all control

communication between clients and the DPSS. Clients establish an initial

connection to the master, then typically establish connections to as many scribes

39
or disk servers as necessary.

When reading data from the DPSS, clients send lists of logical block names,

representing the desired data blocks, to the master. The master validates the list

as necessary, verifying the existence of the requested blocks.10 Each valid block

name is translated to a request for some number of bytes from a certain physical

location specified by server host, disk, and disk offset, then forwarded to the

appropriate disk servers for satisfaction. The disk servers retrieve the requested

data, either from disk or from their memory cache, and write the data to the

client.

Blocks read from disk are added to a memory cache maintained by the

server. Caching assists clients having high request rates, e.g., TerraVision,

because by default each new set of block requests causes the DPSS server to

disregard, or flush, any unsatisfied requests from the prior set of requests. Since

a block may have been read from disk but its still-pending request flushed before

it could be sent to the client, caching the block keeps it available for subsequent

access should the client re-request it, as is likely with TerraVision.

When writing data to the DPSS, clients send data blocks directly to the

scribes, sending only metainformation—specifically, the correspondence

10.The master may also enforce security policies, authenticating client
requests and verifying access authorizations.

40
between each block's logical name and its physical location—to the master.

In each case, data are transferred directly between the client and the relevant

disk server or scribe, preventing the master from becoming a bottleneck in the

data transfer. However, the master monitors all data transfers by virtue of its role

as the DPSS name-translation module, corresponding logical block names and

physical locations. (By providing this mapping service, the DPSS allows clients

to refer to their data in more meaningful ways, while simultaneously isolating

clients from the details of physical location. Such isolation, together with a

redundant storage strategy, allows the master to perform transparent fault

recovery at runtime by redirecting requests away from a failed disk or host to

backup hosts and/or disks.)

In order to ensure maximum efficient use of the DPSS—i.e., to achieve the

greatest possible parallelism of operation at the server and disk levels when

reading, and to achieve the highest possible network bandwidth from the disk

servers to the client—client data can be written to the DPSS with special regard

for characteristic or expected data access patterns. Much effort, for example,

has gone into optimizing block placement for TerraVision data sets based on

expected access patterns [5]. However, in practice it appears that random

placement with a high degree of parallelism works nearly as well in most cases.

The data rates of current MBone sessions are several orders of magnitude

smaller than typical TerraVision data rates. However, the MBone is not

41
intrinsically limited to these low average data rates: rather they are an attempt to

accommodate the many portions of the Internet connected via low-bandwidth

links such as modems. MBone conferences can and will consume more

bandwidth as it becomes available. Indeed, MBone sessions of multi-megabit

data streams have been and are being held within high-speed, high-bandwidth

networking environments, e.g., BAGNet [41].

CHAPTER III

FUNCTIONALITY AND DESIGN ISSUES

Conceptually, the DMRP can be considered an RTP packet filter and

generator, coupled with a mechanism for storing these packets on, and retrieving

them from, the DPSS. The two functions are largely separable, linked only by

the data being stored or played back, and the DMRP's design reflects this natural

separation.

III.1 RTP/RTCP Packet Management

The DMRP is intended to be a fully interoperable RTPv2 application, which

means that it must implement the protocol requirements of RFC 1889 and RFC

1890. Reviewing these documents, it became clear that RTP and RTCP packets

would require separate filtering mechanisms since the packets have quite

different internal structures. However, corresponding RTCP and RTP streams

must share a significant amount of state information. These two imperatives

determined the DMRP packet manager's basic conceptual design, as illustrated
42

43
in Figure 6:

The data and control handlers process RTP and RTCP packets, respectively,

as their names suggest. The shared state database is the mutually accessible

repository representing the data to which both handlers require access. Note

that the shared state includes the information conveyed by every other

participant's RTP and RTCP packets, so the database is organized by source.

The arrows in Figure 6 denote the flow of data. The data handler only

updates the shared state; the control handler both updates the shared state and

accesses it to generate the application’s RTCP packets.

III.2 DPSS Constraints

In truth, the DPSS is a somewhat awkward match as a storage device for

current MBone data because the average rates of data produced and consumed

Shared state DB

Control packet handlerData packet handler

Figure 6. DMRP Packet Manager (conceptual design)

44
by current MBone tools are so small. The DPSS was designed for optimal

behavior in an environment where significantly greater average bandwidth usage

is the norm: as a result, DPSS blocks are on the order of 64 KB. RTP packets

vary in size according to the type of data they carry, but the largest packets at

present are only on the order of 1-2 KB.

The disjunction between the granularity of current typical MBone data and

DPSS data reduces to the concrete problem of corresponding small RTP and

RTCP packets with much larger DPSS data blocks. The solution is fortunately

quite straightforward: a DPSS data block should contain dozens or hundreds of

RTP packets. During recording, the DMRP buffers packets until they constitute a

contiguous block that is large enough for efficient storage on the DPSS; during

playback, the DMRP obtains data from the DPSS in blocks, but emits the data

packet by packet.

The client interface to the DPSS—specifically, the client-side API—permits

the client to issue a request for data, and separately to read the data. By always

requesting the next data block needed before processing the most recently

received block, the DMRP ensures that as much as possible of the latency

introduced by the DPSS is subsumed within the time spent processing the prior

data block. In the best case, the DPSS can completely process the request and

transfer the block over the network while the DMRP is processing the prior block,

limiting the client-side delay to the time needed to transfer the data block from

45
kernel memory to user memory.

III.3 Other Design Considerations

The ability to save entire RTP sessions naturally raises the issue of how the

sessions are organized for retrieval. The DMRP does not extensively address

this question, but it has a rudimentary built-in naming facility that uses the limited

data set management functionality provided by the DPSS itself.

The DPSS development team has been working with the developers of a

WWW-based data object manager, WALDO [19], to enable WALDO to catalog all

types of data that can be stored on the DPSS. In this way, WALDO will provide

DPSS users with a consistent interface by which they can access their data.

WALDO’s designers envision allowing the user to browse a collection of data

sets (called large data objects) via a display of associated information (metadata)

pertaining to each; such information could include the data type, owner, size, and

a thumbnail image if available. Each entry would also include a hyperlink; by

following the hyperlink, the user would cause WALDO to launch an application

appropriate for accessing that type of data. In the case of MBone data stored on

the DPSS, WALDO would actually launch a DMRP plus whatever other

applications were appropriate. For recording it is conceivable that the DMRP

would be the only necessary software, but for playback, WALDO would have to

46
launch end-user tools as well, e.g., vic and vat.

Thus envisioned as "middleware," the DMRP was not given a GUI, and its

current model of interaction with the user is quite primitive. Whether simpler and

more intuitive means of controlling the DMRP should be built into WALDO or into

the DMRP itself is under discussion.

III.4 Design

The DMRP consists of two modules, the recorder and the player. The

recorder and player are each composed of one or more session manager

modules. Each session manager controls the application’s participation in a

single RTP session; recording a conference consisting of an audio session and a

video session would require two session managers.

Each session manager is comprised of a packet manager module and a

DPSS I/O module. The two modules interact via a shared data buffer under the

control of the session manager. In the recorder, the packet manager fills the

data buffer and the DPSS I/O module "drains" it by dispatching the buffer’s

contents to the DPSS as a data block. In the player, the roles are reversed: the

47
DPSS I/O module "produces" and the packet manager "consumes."

The conceptual design of the DMRP is illustrated in Figure 7:

As in Figure 6, arrows indicate the possible directions of data flow; the thicker

arrows denote the flow of data to or from the network, with the particular source

or sink below the arrow in italics. Note that in the player, the data packet handler

DPSS
I/O

Session manager

to/from DPSSto/from MBone to/from MBone

Recorder or player

Session
manager

Session
manager

Session
manager

...

Shared state DB

Data packet handler Control packet

Data buffer

Figure 7. DMRP design

48
still updates the shared state database, even though the data come from the

DPSS via the shared data buffer. This is necessary to ensure that the control

packet handler generates RTCP packets that reflect the DMRP’s playout rate so

that receivers obtain a true picture of the DMRP’s performance.

CHAPTER IV

IMPLEMENTATION AND ARCHITECTURE OF THE DMRP

IV.1 Introduction

The DMRP’s design decomposed its functionality into relatively independent

modules, some of which further decomposed into smaller functional modules.

Such modules could have been implemented in many ways and in many

languages, but the encapsulation of functionality and state implicit in, e.g., the

packet handler, made it natural to view the project in terms of interacting objects.

At the same time, it made sense to leverage the functionality offered by the

existing DPSS client library (actually a set of several libraries) that offered C

language functions to facilitate client interaction with the DPSS. Hence from the

beginning, C++ was a logical choice for the language in which to implement the

DMRP. An unexpected benefit of coding in C++ was the availability of the C++

Standard Template Library to address the issue of how best to store data that

had to be accessed by SSRC ID.

As indicated in Figure 7, both the recorder and player were designed to

handle multiple RTP sessions simultaneously, as will usually be necessary for
49

50
video conferences (recall that each medium usually constitutes its own RTP

session). Each session can largely be handled independently of any other

session, since there is no need for session managers to exchange information

with one another. Because the session managers’ activities are parallel,

concurrent, and non-interacting, the session managers were ideal candidates for

implementation via threads.

IV.1.1 C++ Terminology and Notation

The description of the DMRP’s implementation will occasionally resort to

C++-specific notation or terminology, some of which will be reviewed here. A

C++ class is a type that defines an aggregate of "objects of various types . . . , a

set of functions for manipulating these objects . . . , and a set of restrictions on

the access to these objects and functions" ([37], 487). The objects and functions

within a class are its members; member functions are frequently termed

methods. The C++ :: operator particularizes the scope of a member; subsequent

sections of this document will frequently refer to a function func that is a member

of class Cl as Cl::func(), especially if func is referenced in the discussion of a

class other than Cl.

An instance of a class is called an object. During object instantiation, C++

implicitly invokes a special method of the class called a constructor; the

constructor allows a class’ implementor to ensure that the object is initialized to a

51
known state. Object instantiation is frequently termed construction. A destructor

is a method that performs any required actions to ensure that the object is in a

known state prior to the deallocation of its memory. Not all classes require

constructors and destructors, and some classes may have more than one

constructor method.

C++ objects control access to their members using the keywords private,

protected, and public in the class definitions. These keywords define quite

specific conditions under which members are visible or not visible outside the

scope of the object. For the purposes of this discussion, however, a private

member of object O can be considered visible only to, and usable only by,

members of O, whereas a public member of O is visible to and usable by any

object or function that can access O. In this paper, all methods discussed are

public unless stated otherwise.

IV.1.2 C++ Standard Template Library

From the outset, it was clear that the packet manager would need an efficient

mechanism to look up per-source data in the RTP/RTCP shared database using

a source’s (randomly chosen) SSRC ID as a key. Because the DMRP was being

implemented in C++, it was possible to take advantage of the recently

standardized Standard Template Library (STL) [36] to manage the key/data

correspondence. STL provides a framework for the use of generalized

52
algorithms and data types.

A C++ template, or class template, "specifies how individual classes can be

constructed much as a class declaration specifies how individual objects can be

constructed" ([37], 595). STL uses templates to parameterize its built-in

functions during compilation. The library also relies on the ability of C++ objects

to define their behavior when operators such as less-than (<) are applied to

them. Thus STL’s sorting algorithms, for example, may generically apply < to

objects being sorted without regard to the objects’ complexity, relying on the

objects’ implementor to supply a meaningful definition of < as applied to the

objects.

IV.1.3 Threads

For code portability, the DMRP adheres to the threads API defined by the

formal standard POSIX 1003.1c-1995 [3], approved by the IEEE in June 1995

and hereinafter referred to as "the POSIX threads standard" or simply "POSIX."

Under the POSIX threads standard, a process consists of a single thread

executing the main body of the program; this thread is referred to as the initial

thread. The initial thread differs from all other threads in the process in that if the

initial thread is destroyed, all other running threads in the process are also

terminated: the entire process is destroyed. The initial thread is also the only one

53
not explicitly created by the process.

A POSIX thread is created via the pthread_create() function, which assigns

the new thread an identifier and causes it to execute a function defined by the

caller, the start function. The newly created thread returns when it has finished

executing the start function, but unless specifically allowed to do so, it does not

give up its resources until another thread has explicitly joined with it using

pthread_join(). pthread_join() acts as a thread synchronizer by allowing the

creating thread to obtain the created thread’s return status before the latter is

destroyed.

In the DMRP, the initial thread creates a thread to control each of the session

managers. The initial thread can control the execution of each of the session

managers within the process by setting a status flag in the session manager.

Because the flag is accessed by more than one thread—in fact, by two, the initial

thread and the session manager thread—inconsistent results are possible if the

threads’ access is not controlled via mutex locks. POSIX provides mutexes and

defines the functions pthread_mutex_lock() and pthread_mutex_unlock() to

acquire and to release mutexes, respectively. The status flag and associated

mutex are encapsulated in the AppStatus class; see Section IV.2.7 for more

details.

54
IV.2 DMRP Classes

The DMRP recorder and player are implemented as distinct applications.

This is a result of the project’s development history: it was necessary to develop

the recorder first in order to understand the structure of the data the player would

be manipulating. However, the two applications must perform some of the same

tasks, such as joining RTP/RTCP sessions and both sending and receiving

RTCP packets.

The actual implementation of the DMRP has resulted in the two applications

sharing most of the same code base in the form of classes which operate one

way during recording and the opposite way during playback. The shared code

base reflects the two applications’ opposite yet highly correlated activities.

The DMRP’s class hierarchy, whether recording or playing, can best be

understood by considering the following functional areas: generic networking,

RTP/RTCP state management, RTP/RTCP packet handling (i.e., filtering), DPSS

input and output, per-session management (comprising the interactions between

RTP/RTCP packet management and DPSS I/O), and application control. Each

functional area is represented by a class hierarchy. In addition, a separate class

governs the interaction between the protocol state and protocol packet-handling

classes.

55
IV.2.1 Generic Networking Classes

IV.2.1.1 IPNetAP

At heart, the DMRP’s networking needs are quite basic, comprising open(),

read(), write(), and close(), to use the Unix I/O model.11 The IPNetAP class

encapsulates the required functionality and hides the specifics of the operating

system network programming interface.

The IPNetAP class is oriented to the needs of multicast communication. It

contains both a local address (i.e., the local interface through which the session’s

traffic will be sent and received) and a remote address, usually an IP multicast

address and port. After object construction, the application can join a multicast

session by invoking the IPNetAP mcast_connect() method. mcast_connect()

requests the operating system to allocate the necessary resources for IP

multicast communication and to register the application’s desire to join the

designated multicast session with the multicast router. (mcast_connect() also

supports unreliable unicast communication, in which case the remote address is

that of a single host rather than a multicast group, and the "connect" behavior is

slightly different.)

Following a successful call to mcast_connect(), the application can read from

or write to the network. IPNetAP::recv() and IPNetAP::recvfrom() are modeled

11.In fact, IP multicast does not require the functionality of close() as such,
although both RTP/RTCP and Unix sockets do.

56
on the Berkeley sockets routines of the same name that read data from the

network—recvfrom(), like its sockets namesake, also returns the address of the

host whence the data originated. Similarly, the send() and sendto() methods

transmit data to the networks, sendto() allowing the application to specify the

address to which the data are to be sent (send() uses the remote address

specified either during object construction or in the call to mcast_connect()).

The disconnect() method advises the operating system that the application is

finished communicating, allowing the system to recover local resources, and

partially resets the IPNetAP to indicate that the application may no longer read or

write via the object. However, this method does not change either the local or

remote address previously set.12

The IPNetAP class is implemented using Berkeley sockets; several class

methods are simply wrappers for sockets interfaces, as evidenced above. One

unfortunate implementation flaw is the lack of any method analogous to select():

this results in a few instances of other classes having to operate directly at the

socket level, violating the encapsulation of the implementation that the IPNetAP

class otherwise provides. This flaw could be repaired by providing a new class

that allows operations across multiple IPNetAP objects.

12.By default, an IPNetAP object chooses an address to serve as the local
communication endpoint. The application may override this default, as
may be desirable for a multihomed host.

57
IV.2.1.2 IPAddr

The Berkeley sockets API uses the sockaddr_in structure to pass IP

addresses and transport-level port numbers between many of its routines. The

DMRP hides the complications of manipulating sockaddr_in structures within the

IPAddr class. This class provides a number of ways to initialize its value,

including methods that translate an ASCII string (representing an IP address in

dotted-decimal format) and a 16-bit integer (the port number) to an appropriate

sockaddr_in for use within the DMRP. The class also provides methods for

assigning the value of one IPAddr to another and for testing two IPAddrs for

equality (defined as the same IP address and port number).

The IPNetAP class represents its local and remote addresses as IPAddr

objects. Other classes use IPAddr objects whenever address information must

be exchanged or manipulated; in particular, the RTPSourceList method

get_source() tests two IPAddr objects for equality in order to detect SSRC ID

collision.

IV.2.2 RTP/RTCP State Management Classes

IV.2.2.1 RTPSource

RTP requires that each participant use RTP and RTCP packets to monitor

and to cache some of the state of every other participant, including each source’s

SSRC ID, host address, and last sequence number seen. Most of the cached

58
items are required for RTCP sender and receiver reports, but the SSRC ID and

host address are required to detect SSRC ID collisions (two or more session

participants accidentally selecting the same ID).

The DMRP encapsulates each session participant’s state information,

including its own, in the RTPSource class. The RTPSource is at the heart of the

DMRP’s shared-state database, and as such is nothing more than a repository: it

performs no processing of the data it stores, leaving that activity to other classes.

Its primary roles are to eliminate duplication of data in the packet handler

modules and to provide minimal access control to the data. The latter is

accomplished via C++ class-based scope control and results in only a limited

number of other classes’ objects having the ability to modify an RTPSource’s

contents.

In addition to the SSRC ID, source address, and last sequence number, an

RTPSource includes the number of complete cycles through the sequence

number space (i.e., how often the source has wrapped sequence numbers), the

transit time of the most recent packet, an estimate of the current network jitter, a

flag indicating whether the DMRP has received data from the source recently, a

flag to indicate whether the DMRP itself has sent data (set only in the

RTPSource corresponding to the DMRP itself), the total number of packets and

octets sent by the source to date, and several fields used for timing

synchronization. There are also class members used to validate a source from

59
which the DMRP has not previously heard; see the description of the

RTPDataHandler, below, for more information on this activity.

The RTPSource was based on a sample data structure provided by RFC

1889, extended to accommodate the DMRP’s specific needs (e.g., for timing and

synchronization data).

IV.2.2.2 RTPSourceList

Each RTP and RTCP packet’s header must be parsed for information either

to update or to compare against the data in the appropriate RTPSource, so every

packet’s arrival requires locating the RTPSource corresponding to the SSRC ID

in the packet’s header. The RTPSourceList encapsulates a group of RTPSource

objects and the functionality required to access them.

The most important member function is get_source(), which requires an

SSRC ID and, optionally, the source’s address (if provided, it allows the routine

to check for SSRC ID collisions) and returns an RTPSource object. Internally,

get_source() first attempts to find an RTPSource for the given SSRC ID, and

returns the object if it exists (and if there is no SSRC ID collision, if the caller

provided a source address); otherwise, get_source() builds a new RTPSource

object, adds it to the RTPSourceList’s set of RTPSource objects, and returns the

newly constructed object. Access, therefore, implies creation.

The RTPSourceList’s internal database of RTPSource objects is implemented

60
using an STL associative container called a map. An STL map corresponds key

values and data values; each unique key is associated with one and only one

datum. In this case, each 32-bit SSRC ID is the key that recovers the associated

RTPSource object.

IV.2.2.3 RTPSession

The RTPSession class is little more than a wrapper for an RTPSourceList and

a repository for two per-session attributes, the session’s requested bandwidth,

and a seed value for a random number generator. The bandwidth (in bytes per

second) is needed to calculate the correct interval between RTCP packets

generated by the DMRP; a correct packet interval helps to ensure that RTCP

does not exceed the fraction of the session’s total bandwidth assigned under the

application’s profile. (The DMRP operates under the general A/V profile

described in RFC 1890.)13 The seed value is used to prime the random number

generator that chooses the DMRP’s SSRC ID for the session.

The RTPSession class is a remnant of an earlier stage of the DMRP’s

implementation. Originally, the class directly implemented RTPSource lookup.

However, as the DMRP became more sophisticated, it became necessary to

isolate the lookup functionality for use by other classes. The RTPSession will

13.What the bandwidth for a session should be is not addressed by
RTP/RTCP. Some MBone tools, e.g., sdr, allow the user to set the band-
width and recommend defaults for certain types of sessions.

61
probably be merged with the only class that derives from it, the RTPComm (see

Section IV.2.4), in a future version of the DMRP.

IV.2.3 RTP Packet-Handling Classes

The bulk of the code implementing packet-handling—i.e., parsing of headers

(and in the case of RTCP packets, the contents as well), calculating statistics like

network jitter, and updating RTPSources with current packet information—is

contained in the RTPDataHandler and RTPCtrlHandler classes. However, some

common functionality was abstracted into separate classes for clarity and ease of

maintenance.

IV.2.3.1 RTPFormat

The RTPFormat class contains payload format-specific data. The

interpretation of the RTP timestamp’s value—or, more to the point, the

interpretation of the RTP clock rate—is dependent upon the characteristics of the

data being transported. As an example, RFC 1890 mandates that the RTP clock

rate for audio encodings "equals the number of sampling periods per second," so

that for a typical audio encoding like vat’s default, PCM, the RTP timestamp

value is incremented by 8000 RTP timestamp units, or ticks, per second.

The two most important methods for this class are ticks2ms() and ms2ticks().

ticks2ms() calculates the number of milliseconds corresponding to a given

number of RTP ticks for a particular payload format. ms2ticks() calculates the

62
number of RTP ticks corresponding to a given number of milliseconds for a

particular data format; this method is important for generating the RTP timestamp

for RTCP SR packets.

The RTPFormat class isolates media-dependent information in a single

module so that the rest of the packet-handling classes can be as general and

flexible as possible. The RTPDataHandler and RTPCtrlHandler classes inherit

from RTPFormat so that they automatically include the functionality needed to

interpret RTP timestamp values for both RTCP reporting and RTP data playback.

IV.2.3.2 Timer

The Timer class provides routines that monitor inter-packet intervals. Its

functionality is important for both the recorder’s and player’s RTCP packet

emissions as well as the player’s transmission of data. Each Timer object keeps

track of the wallclock time the prior packet was sent, the wallclock time at which

the next packet is to be dispatched, and the time remaining until next-packet

dispatch.

Four methods are at the heart of the Timer class. set_send_timer() takes an

amount of time, in milliseconds, and sets the next-packet dispatch time to the

session’s start time plus that number of milliseconds. time_to_next_send()

returns the difference between the current time and next-packet dispatch time.

ready_to_send() returns a nonzero value if the next-packet dispatch time has

63
been reached or passed, and zero otherwise. Finally, send_wait() is used by the

RTPDataHandler and RTPCtrlHandler objects to wait the (usually short) interval

until the next packet is to be sent on playback.

The Timer class is implemented using the Unix timeval structure and relies

heavily on the C library’s gettimeofday() function. It does not, however, rely on

traditional Unix timing mechanisms such as those used by alarm() or setitimer():

these calls rely on SIGALRM, which is reserved for use at the application level

(see Section IV.3).

IV.2.3.3 RTPHandler

Both the RTP and RTCP packet handlers need to connect to multicast

sessions and to disconnect from those sessions; they also need to keep track of

the state associated with their presence in the session(s), which may actually

represent several different points of contact to the network. The RTPHandler

class embodies the foregoing functionality.

The RTPHandler sets the TTL of the application’s packets, governing the

packets’ effective scope. The RTPHandler otherwise consists mostly of wrapper

methods for the IPNetAP class, with one important distinction: the RTPHandler is

designed to manage multiple IPNetAP objects. This capability is critical for the

player, allowing it to simulate the presence of multiple data sources, as may have

64
existed in the original session.

However, many MBone sessions include many receivers but only one or a

few senders. The recorder stores all the RTCP packets that it receives (except

as noted in Section IV.2.6), so it would be possible to recreate all receivers’

presence on playback; however, doing so would have little practical benefit, for

passive receivers contribute nothing to the substance of the playback. More

importantly, each recreated session member would require finite system

resources such as UDP ports and Unix file/socket descriptors which would be

tied up to no good purpose, even if there were enough such resources to do so.

Therefore, the RTPHandler maintains a list of IPNetAP objects, indexed by

SSRC ID, corresponding to original session members that actually sent data. An

IPNetAP object for a source is created and added to the list only after at least

one data packet from that source is encountered in the playback data stream.

Thus each member of the original session appears during playback only if it sent

data, and only from the moment it first sent data.

IV.2.3.4 RTPDataHandler

The RTPDataHandler class encapsulates all the functionality needed for the

DMRP to receive and retransmit RTP data packets. Because the DMRP was not

intended to modify the data in any way, the RTPDataHandler actually performs

all of its limited work upon the RTP fixed header. It inherits from RTPHandler for

65
packet transmission and receipt functionality, from Timer for inter-packet timing

facilities, and from RTPFormat to aid in RTP timestamp interpretation.

The class’ main routine for parsing incoming packets is parse_pkt(), which is

invoked whenever a new RTP packet arrives during recording. The method finds

or creates an RTPSource object in the RTPSession based on the RTP fixed

packet header’s SSRC ID field, then checks the packet header’s sequence

number and modifies the running estimate of the interarrival jitter. The sequence

number check is performed by the private method update_seq(), which compares

the current packet’s sequence number against the last sequence number seen

from the source, if any. update_seq() requires that a source be considered "on

probation" until the RTPDataHandler has received at least two packets with

adjacent, in-order sequence numbers. The method also checks both for

sequence number wrap, maintaining a counter of such sequence number wraps,

as well as for source restart, indicated by a break in sequence number continuity

followed by the establishment of a new run of contiguous sequence numbers.

update_seq() is based on the algorithm provided in Appendix A.1 of [34].

Following sequence number evaluation, parse_pkt() updates the current

estimate of interarrival jitter, defined as "the statistical variance of the data

[packet] interarrival time" ([34], 71), using the private method update_jitter().

update_jitter() first calculates the raw difference between the current packet’s

arrival time and its sample time as given in the RTP timestamp field of the fixed

66
packet header; this difference is the packet’s transit time. Then the difference

between the current and previous packets’ transit times is calculated. The

current jitter estimate is subtracted from the difference in transit times, a gain

factor of 1/16 is applied, and the result added to the current jitter estimate. (The

gain factor is for noise reduction in the calculations.) update_jitter() is based on

an algorithm provided in [34], Appendix A.8.

On playback, the method make_pkt() is invoked to refashion each saved

packet’s RTP fixed header as necessary. As noted in Section II.1.2.2, for

additional security the RTP timestamp and sequence number should be

randomly initialized to new values at the start of playback, with all subsequent

replayed packets incrementing from the new values; the SSRC ID should also be

randomly initialized to avoid collisions (although collisions are unlikely unless

playback occurs in the same session recorded earlier). However, for ease of

implementation, the current implementation of make_pkt() does not change the

original values.

make_pkt() updates, or creates, the RTPSource associated with the saved

packet’s SSRC ID, calling update_seq() in the process. It also establishes the

correct transmission time by calculating the packet’s offset from the first data

packet received in terms of RTP ticks. This tick interval is then converted to

milliseconds by calling RTPFormat::ticks2ms() and this millisecond offset is

passed to Timer::set_send_timer(). The first data packet received in the original

67
session, in other words, is treated as the start of that session for timing purposes.

Note that an RTPDataHandler object does not independently receive or send

packets, that is, the object is not associated with an independent thread of

control during recording or playback. Rather, the object is invoked as needed by

the thread associated with each SessionManager. See the discussion of the

SessionManager for a more detailed explanation.

IV.2.3.5 RTPCtrlHandler

The RTPCtrlHandler class encapsulates all the functionality needed for the

DMRP to send and to receive RTCP packets. It parses RTCP packets from

other session members, modifying the RTPSession database as new members

join and as existing members report their current state (e.g., the amount of data

they have received from each source, their estimate of the interarrival jitter, etc.).

It constructs and transmits the DMRP’s own RTCP packets and calculates the

interval between each such packet. (Like the RTPDataHandler, however, the

RTPCtrlHandler does not execute within its own thread of control.) The

RTPCtrlHandler inherits from the RTPHandler class for packet transport

functionality, from the Timer class for inter-packet timing facilities, and from the

RTPFormat class to aid in RTP timestamp interpretation and generation.

The RTPCtrlHandler can be understood by examining five functional areas:

construction, parsing of received packets, calculating the pause between

68
transmitted packets, building packets, and use of stored RTCP packets during

playback.

An RTPCtrlHandler object’s constructor attempts to initialize the application’s

RTCP SDES fields as fully as possible based on the user invoking the

application, making use of GCOS information in the system’s password database

or, if available, the .RTPdefaults file created by vic or vat in the user’s home

directory. The constructor also seeds the random number generator used to

create the application’s SSRC ID. The constructor requires the name of the

program being run (for the SDES TOOL value) and the session’s TTL.

After reading an RTCP packet from the network, control passes to the method

parse_pkt(). parse_pkt() first checks the packet’s gross structure to verify that

some of the fixed fields—e.g., the protocol version and length—are correct, then

updates the running average of RTCP packet size and applies packet

type-specific methods to process the packet’s contents. Only four type-specific

methods are currently defined: parse_sr(), parse_rr(), parse_sdes(), and

parse_bye(), corresponding to the four most common RTCP packet types (see

Section II.1.2.3). parse_sr() and parse_sdes() update the appropriate

RTPSource according to the packet’s contents. parse_rr() only registers a

session member’s presence in the RTPSession database; further processing is

unnecessary since RTCP RR statistics are not currently of interest to the DMRP.

Similarly, because the departure of session members is not relevant to the

69
DMRP, parse_bye() does nothing. parse_rr() and parse_bye() exist as

placeholders in case they are needed in future.

parse_pkt() "walks" through RTCP compound packets, parsing each

constituent packet using the appropriate type-specific method. A successfully

processed packet’s contents are not altered. An error in any constituent packet

invalidates the entire compound packet: there is no provision for continued

processing. Because RTPv2 is intended to replace older versions of RTP/RTCP,

parse_pkt() has not been designed to parse non-RTPv2 control packets and

treats them as invalid.

As previously mentioned, RTCP is designed to be self-limiting in its bandwidth

consumption, taking no more than a small, fixed percentage of an RTP session’s

total agreed-upon bandwidth. The RTCP traffic rate is controlled largely by the

frequency at which packets are transmitted. set_rtcp_interval() calculates the

time at which the next RTCP packet should be sent, taking into account both the

current number of session members and the estimated average RTCP packet

size.

set_rtcp_interval() first determines whether a partitioning of the available

RTCP bandwidth between senders and receivers is required. All sources that

have sent data in the last two reporting intervals are collectively allocated a

minimum of 25% of the total RTCP bandwidth; if senders were not given a

minimum amount, a small number of senders in a large session would be unable

70
to send reports frequently enough to be useful to the rest of the session

participants. A partitioning of the bandwidth would not be necessary if, for

example, the session contained a large number of senders relative to the total

number of session members. If it is necessary, set_rtcp_interval() determines

whether the DMRP has sent any data in order to determine whether it will share

the senders’ bandwidth or that remaining to the other session participants. Then

the average packet size is updated with the size of the last RTCP packet sent by

the RTPCtrlHandler. Finally, the average packet size is multiplied by the number

of members sharing the available bandwidth (giving an estimate of the total

amount of data these members would send if they all transmitted one RTCP

packet of the average size) and this total is divided by the available bandwidth to

produce the interval until the caller should send its next RTCP report.

set_rtcp_interval() is based on the algorithm provided in Appendix A.7 of [34].

Whenever an RTCP packet (other than an RTCP BYE14) should be sent, the

application invokes the send_rpt() method. send_rpt() is misleadingly named, for

its primary task is to create the RTCP compound packet that will be sent. It

builds the packet in a static buffer created during construction of the

RTPCtrlHandler object.

send_rpt() first checks whether the application has sent data: this will never

14.To send an RTCP BYE packet, the special method send_bye() is used.

71
be true for the recorder and will usually be true for the player. If data has been

sent, send_rpt() first creates an SR using the private method make_sr();

otherwise, it creates an RR for each source that has sent data during the last two

RTCP reporting intervals. RFC 1889 requires that an RTCP compound packet

always contain an SR or RR as its first component. If no source has sent data,

the packet will begin with an empty RR whose reception report count is zero.

Following the initial SR or RR, send_rpt() constructs a two-chunk RTCP

SDES using the private method make_sdes(). make_sdes() invokes another

private method, choose_sdes_items(), to ensure that the first chunk is a CNAME

item and the second chunk either a NAME, EMAIL, or TOOL item. This selection

of SDES items is suggested by RFC 1889 to allow rapid distribution to the entire

multicast group of the most important information, the CNAME, while also

allowing eventual delivery of less important but still useful identifying data.

After building the compound packet, send_rpt() transmits it and calls

set_rtcp_interval() to calculate the time at which the next RTCP packet should be

constructed and sent.

Note that send_rpt() and most of the methods it invokes require an

RTPSource that embodies the current state of the reporter. Only one

RTPSource represents the recorder, but the player’s state may be represented

by several RTPSources, each corresponding to a separate data source in the

original session. RTCP packets must be generated for each RTPSource for

72
which the player is responsible.

Although the DMRP stores RTCP packets along with RTP data packets, the

RTCP packets cannot blindly be replayed. Many RTCP data items pertain only

to the transient state of the original session, such as the number of lost packets

reported by a given receiver, and would be at best meaningless (and more likely

misleading) in the context of a retransmission. Indeed, the reasons for which

RTCP exists mandate that RTCP packets, and the information they contain, be

created ab initio during a session.

However, it is useful to identify the original members of a session on playback

if they appear, and RTCP SDES packets contain precisely the identifying

information needed. Therefore, stored RTCP packets are scanned during

playback by the parse_saved_pkt() method. parse_saved_pkt() traverses the

RTCP packet, ignoring all SR and RR components, deleting from the

RTPSession any source for which a BYE is read, and passing any SDES

components to the routine update_sdes(). update_sdes() uses the original

SSRC ID in the SDES packet to perform a table lookup of the source’s SDES

information as maintained in a structure called an sdesinfo. As with other SSRC

ID-based lookups in the packet-handling classes, if such a table entry does not

exist, one is created.

At present, update_sdes() is only concerned with the source’s original SDES

CNAME and SDES NAME. The DMRP uses the original CNAME without

73
modification, under the assumption that if the original CNAME was unique in the

original session, it will likely be unique in a replay of the session. However,

because most MBone end-user tools use the SDES NAME to identify session

members in a human-readable fashion, it seemed appropriate to avoid confusion

as to the recorded nature of a playback session by appending " (DMRP replay)"

to the original SDES NAME during playback.

As noted in the discussion of the RTPHandler, a member of the original

session does not appear as part of the playback session unless and until it sends

data. It is helpful, however, that as much identifying data as possible be

available for such a sender soon after it appears as part of the playback session.

The sdesinfo allows the RTPCtrlHandler to accumulate such identifying data from

the source’s stored RTCP packets even before it is "known" to have sent data.

IV.2.4 RTP/RTCP Protocol Management Class: RTPComm

The RTPComm class attempts to encapsulate all of the data and functionality

associated with RTP/RTCP packet handling in the DMRP. It represents the

DMRP’s interface to a single RTP session, coordinating the functioning of the

packet-handling classes (in fact, it contains an RTPCtrlHandler object and an

RTPDataHandler object) and the state management classes and hiding much of

the complexity associated with both. The RTPComm class thus allows a caller to

control the RTP/RTCP classes as a single module using relatively simple and

74
straightforward semantics such as "join," "read data," and "send control." It

embodies the conceptual design of Figure 6. The RTPComm class inherits from

RTPSession.

Construction and initialization consists of constructing the member

RTPCtrlHandler and RTPDataHandler objects and calling

RTPCtrlHandler::set_rtcp_interval() to choose a time to send the application’s

first RTCP packet (thereby registering the application’s presence in the session).

Semantically, the class restricts the DMRP in its interaction with the session

to joining, receiving a data or control packet, sending a data or control packet,

and disconnecting. The class also includes an encapsulation of the packet

handlers’ timing facilities to provide hints to the DMRP as to when a packet,

either data or control, should be sent.

The join functionality is provided by join()15, which "connects" the DMRP to

the RTP session by triggering mcast_connect() for the RTPComm’s

RTPDataHandler and RTPCtrlHandler (recall that the required IPNetAP object is

encapsulated in one of the objects’ base classes, RTPHandler; see Section

IV.2.3.3 and Section IV.2.1.1 for more details).

Once the application has determined that either an RTP or RTCP packet is

15.There are actually three join() methods, each allowing the caller to
describe the session’s multicast address in a different format but other-
wise providing the same services.

75
waiting to be read, it invokes the RTPComm methods read_data() or read_ctrl(),

respectively. read_data() in turn invokes the RTPDataHandler to read and to

parse the RTP packet. If in parsing the packet the RTPDataHandler indicates

that an SSRC ID collision has taken place and the RTPComm determines that

the collision involves the DMRP’s own SSRC ID, read_data() chooses a new

SSRC ID before returning. read_ctrl() similarly invokes the RTPCtrlHandler to

read and to parse the RTCP packet. Both methods return the number of bytes of

data read, or -1 on error (e.g., upon encountering an unrecognized or malformed

packet header).

Both read_data() and read_ctrl() also prepend a header structure, dubbed a

PktInfo, to the raw RTP or RTCP packet. The PktInfo contains the packet’s size

in bytes, its type (RTP or RTCP), and its time offset (currently unused), in

milliseconds, from the start of the session.16 The packet size must be saved

because it is part of neither the RTP nor RTCP fixed header: it is provided by the

underlying transport protocol (UDP or something equivalent). The size that

read_data() and read_ctrl() return includes the size of the prepended PktInfo

16.Formerly, the time offset was needed for the player to determine the cor-
rect time at which to replay each data packet, relative to a canonical
starting time for the session which is maintained by the RTPComm.
(This mechanism for timing packet playback was borrowed from the
MBone VCR, which uses a similar per-packet header structure.) As
described in Section IV.2.3.4, however, the current packet-dispatch tim-
ing mechanism is format-dependent and uses the RTP timestamp, as is
correct.

76
structure.

Sending RTCP packets while recording is straightforward: whenever the

application needs to send a control packet, it invokes the RTPComm method

send_ctrl(), which in turn calls RTPCtrlHandler::send_rpt(). Sending RTCP

packets during playback is slightly more complex. Unlike the recorder, which has

only one RTCP endpoint, the player may be responsible for multiple RTCP

endpoints, each of which represents a different member of the original session.

Moreover, the player must send RTCP packets from each endpoint often enough

for receivers to consider the source associated with the endpoint to be alive (i.e.,

its host has neither crashed nor been severed from the network).

For RTCP timing purposes, the player should calculate an RTCP inter-packet

interval for each endpoint as if it were associated with an independent session

member. At present, this is not possible because neither the RTPCtrlHandler nor

RTPComm maintains a separate timer for each endpoint: only one timer is

available to determine the RTCP interval for the entire application.

Consequently, send_ctrl() uses a round-robin algorithm to cycle through all the

endpoints the RTPCtrlHandler has created, calling RTPCtrlHandler::send_rpt()

on only one of them per RTCP interval. This method will not scale to a large

number of playback sources, since receivers will perceive an excessively long

RTCP interpacket interval for each source.

send_ctrl() requires a flag to indicate whether it is being called within the

77
recorder or the player.

Sending data packets (which occurs only during playback) is complex for a

different reason. It is a two-step process because until the saved packet and its

PktInfo have been parsed, the player cannot know when the packet should be

sent in the playback session. The RTPComm method make_pkt() first checks

the type as indicated in the PktInfo, then invokes RTPDataHandler::make_pkt() if

the packet is RTP data. RTPDataHandler::make_pkt() automatically registers

the sending time for the packet, so assuming there were no processing errors,

the player actually transmits the packet at the correct time using the RTPComm

method send_data_pkt(). If RTPComm::make_pkt() determines that it is

processing a saved RTCP packet, it calls RTPCtrlHandler::parse_saved_pkt().

parse_saved_pkt() does not register a time for the saved RTCP packet to be sent

since the packet will not be replayed.

The RTPComm method wait_send_next() compares the times at which the

next RTP and RTCP packets are to be sent, and only waits until the earlier time,

while RTPComm::send_next() checks what kind of packet is being sent, and

invokes the appropriate packet handler object to send it. send_next() also

triggers the construction of an IPNetAP object in both the RTPDataHandler and

RTPCtrlHandler if a data packet is being sent for the first time from a source, as

explained in Section IV.2.3.3. wait_send_next() and send_next() are necessary

to avoid the suspension of the thread controlling the session if it encounters long

78
periods of time during which no session member sends data (pauses) during a

recorded session. (The first implementation of the player simply paused until the

next data packet was ready for dispatch. This mechanism worked until the

player attempted to play back a lecture containing an unusually long pause.

While the player waited until the correct time to send the data packet, it failed to

send RTCP packets. The failure to indicate its continuing presence in the

session by transmitting RTCP packets caused the other session participants’

tools to drop the player from their membership lists, and in a widely distributed

session might have caused routers to prune the player’s subnet from the

multicast distribution tree.)

To disconnect from the RTP session, the RTPComm class provides the

method closecomm(). closecomm() ensures that RTPCtrlHandler::send_bye() is

invoked prior to the actual disconnect of the relevant IPNetAP objects in the

RTPCtrlHandler and RTPDataHandler.

IV.2.5 DPSS Interface Class: DPSSPOC

The DPSSPOC class manages I/O to and from the DPSS. It attempts to

isolate the rest of the DMRP from the complexities of the current low-level DPSS

client API. It frees the DMRP from explicitly having to monitor some of the state

associated with the DPSS session and provides a programming interface that

79
somewhat resembles the Unix filesystem interface.

Before commencing a DPSS session, a client must specify the DPSS master

host and the Data Set Manager (DSM) host; the DSM provides a simple naming

service for the DPSS and its clients. The DPSSPOC constructor allows the

DMRP to specify these hosts. If they are not passed as arguments to the

constructor, it searches for appropriate environmental variables for the host

names or IP addresses. If either the DPSS master or DSM cannot be

ascertained, construction fails.

A DPSS session begins with a call to open_dpss(). open_dpss() contacts the

DPSS master, establishing a connection and a context within which all

subsequent transactions during this session will take place. The state reflecting

this context is embodied in the IssHandle, a data structure provided by the

low-level DPSS client API. Clients treat the IssHandle in the same way

applications treat the Unix FILE structure for buffered I/O, i.e., as an opaque

handle required by the interface routines.

To write data to the DPSS, an application must reserve as much space as is

needed. Space reservation allows greater control of data layout by client

applications, which can take expected data access patterns into account when

distributing their data during a DPSS writing session. Reserving space on the

DPSS in principle requires that the client application choose individual DPSS

disks; in practice, clients need only specify server hosts and by default all disks

80
on those hosts are used. The DPSSPOC method prep_new_set() reserves

space on the DPSS for the recorder. It also registers the set with the DSM, as

clients are expected to do to facilitate monitoring of the DPSS’ contents.

prep_new_set() relies on the DPSSPOC method get_scribe_addrs(), which

takes a string consisting of the desired server names separated by commas or

spaces and caches the server names for subsequent use by both

prep_new_set() and connect_to_scribes(). connect_to_scribes(), called after a

successful return from prep_new_set(), sets up a connection between the

recorder and the scribe processes on the DPSS server hosts that will be writing

the data to disk. Following a successful return from connect_to_scribes(), the

recorder is ready to store data on the DPSS.

The actual storage of data occurs on a block-by-block basis. When the

recorder is ready to commit a block to storage, it invokes the method

send_block().17 send_block() uses a counter to construct the block’s logical

name (see Section II.2.2), calls a low-level DPSS API routine that actually

transfers the data, and increments the block counter.

The DPSSPOC is constrained to write one block at a time because the

underlying DPSS API routine, issSendBlock(), is also so constrained.

17.The recorder actually invokes a wrapper routine, write_dpss(); this
makes the DPSSPOC programming interface more similar to the stan-
dard Unix write() system call.

81
issSendBlock() updates a block lookup table used by the DPSS, the BlockMap,

with several pieces of information that cannot be determined until the block is

actually written. The per-block information includes the block’s size in bytes and

a checksum. Blocks may be of any size, i.e., may contain any number of bytes

of data, up to a maximum of 64 KB. The application includes the exact number

of bytes of valid data in the block in the call to issSendBlock().

To read data from the DPSS, the DPSSPOC provides the method

open_dpss_r(). open_dpss_r() connects to the DSM to obtain information about

the data set,18 including the number of blocks comprising it, then connects to the

DPSS. Connecting to the DPSS to read data is a four-stage process. The client

first contacts the DPSS as in open_dpss() to create the DPSS session context,

then requests that one or more data sets be prepared for reading. The set

preparation request causes the DPSS master to verify that the server hosts on

which the data set is loaded are all available; if they are, the master sends the

client the information needed to establish the data-requesting and data-receiving

streams. The third step is for the client actually to establish these connections to

the DPSS, and the final step is to synchronize the client and DPSS by

18.There are actually two open_dpss_r() methods, one of which allows the
caller to specify the a set’s name and the other of which allows the set to
be specified by its DPSS set ID.

82
exchanging a "ready" message.

The data-request stream is the communications channel through which the

client sends its block requests to the master, while the data-receiving streams

are the connections by which the client receives the requested data directly from

the DPSS servers. As mentioned in Section II.2.3, the client sends block

requests to the master, which translates each request to a physical location

(using the BlockMap) and forwards the location and number of bytes to read to

the disk server. The server reads the data from disk, or possibly finds the data

already resident in its memory cache as the result of a prior request, then

dispatches the data directly to the client. The DPSSPOC provides the method

request_blocks() to issue block requests; the method requires only the number of

blocks to be requested as a parameter. The DPSSPOC method receive_blocks()

reads blocks from the DPSS servers into a buffer; both the buffer and the number

of blocks to be read are provided as parameters to the method.

By requiring that data reading take place on block boundaries, as opposed to

allowing Unix-style read() calls of arbitrarily large or small numbers of bytes, the

DPSSPOC avoids the delays of memory-to-memory copying between an internal

buffer and the user-provided buffer. receive_blocks() can read data directly from

the network into the user-provided buffer.

At the end of a DPSS session, the DPSSPOC method close_dpss() is

invoked. If data were being loaded, close_dpss() carries out final bookkeeping

83
tasks, including updating the set’s DSM entry to reflect the total number of blocks

written, and sending a message to the DPSS master to save the set’s BlockMap.

close_dpss() then ends the DPSS session, using low-level DPSS API routines to

close connections and clean up state as necessary.

If a partially filled block is pending when the recorder is shut down, the

recorder calls send_block() to write the partial block prior to calling close_dpss().

Otherwise the pending data would be lost, as the DPSSPOC does not manage

the data buffer: it is a resource that must be shared between the DPSSPOC and

the RTP/RTCP packet handlers, as is discussed in Section IV.2.6.

IV.2.6 DMRP Session Management Class: SessionManager

The SessionManager class orchestrates the interaction between the

RTP/RTCP packet-handling classes and the DPSS I/O class. A DMRP session

consists of an RTPComm participating in a single RTP session (see Section

II.1.2.2) with an associated DPSSPOC; the two classes exchange data via a

shared buffer. Both classes, together with the shared buffer and some

session-wide state data, constitute a SessionManager.

IV.2.6.1 Construction and Initialization

Constructing and initializing the SessionManager largely consists of

constructing and initializing the RTPComm object, and initializing the DMRP

session state. Much of this state is encapsulated in a data structure called the

84
DMRPSessionInfo. The DMRPSessionInfo includes the session’s multicast or

unicast address, port, and TTL, as well as the name by which the set will be (or

in the case of playback, is) registered with the DSM. For the most part, the

DMRPSessionInfo’s data can be obtained automatically from sdr session

announcements; see Section IV.3.

IV.2.6.2 Recording

To record a session, the recorder first sets up to write to the DPSS, then joins

the session, and finally enters a packet-reading and block-writing cycle. The

SessionManager method open_dpss() performs the steps required to write data

to the DPSS, i.e., establishing a DPSS session context, reserving space,

connecting to the DPSS scribes, and registering the set with the DSM, all as

described in Section IV.2.5. The parameters to open_dpss() include the filename

to be stored on the DSM, the DPSS master host, DSM host (which need not be

the same as the DPSS master host, though it frequently is), the set’s estimated

size, and a string consisting of the names of the DPSS server hosts on which to

store the data.

join_session() is a SessionManager wrapper for RPTComm::join(), with the

SessionManager providing the session’s address in standard dotted-decimal

string form and the port as a host byte-ordered short integer. join_session() thus

creates a pair of communications endpoints explicitly associated with the

85
application, resulting in the recorder appearing as a full-fledged member of the

RTP session, i.e., as one that identifies itself and its current state (packet

statistics) via RTCP.

The SessionManager method mcast_receive() reads both data and control

packets sent to the session, accumulates them in a buffer, saves the data, and

triggers the sending of the recorder’s own control packets. The implementation

uses the Berkeley sockets call select() to poll the RTP data socket and RTCP

control socket, using as a timeout the time at which the recorder must build and

dispatch the next RTCP packet of its own. The select() controls the while() loop

within which mcast_receive() does its work: each iteration of the loop occurs

because either an RTP data packet arrived, or an RTCP packet arrived, or the

time has come to send an RTCP packet. (However, see Section IV.2.7 for

another condition governing the loop’s execution.)

If a packet has arrived, mcast_receive() calls either RTPComm::read_data()

or RTPComm::read_ctrl(), as appropriate. mcast_receive() accumulates packets

in the SessionManager’s built-in buffer simply by maintaining a pointer into the

buffer; this end-of-buffer (EOB) pointer is incremented by the number of bytes

reported as read by the RTPComm reading routines. In case of error, the EOB

pointer is not incremented, so that a malformed or unrecognized packet is

obliterated by subsequent valid packets.

After each packet has been read, the number of accumulated bytes in the

86
buffer—equivalent to the offset of the EOB pointer—is checked against a

"high-water mark." The high-water mark, 64 KB, simply reflects the limitation on

the maximum size of a DPSS block. If the high-water mark has not been

reached, mcast_receive() increments the EOB pointer by the number of bytes

read; otherwise, it calls the SessionManager method save_block(). save_block()

ensures that no more than 64 KB are written to the DPSS using

DPSSPOC::send_block(). If the amount of data accumulated exceeds 64 KB,

save_block() first writes all of the data up to the last complete packet within the

64 KB limit, then copies the excess data from the end of the buffer to the

beginning and increments mcast_receive()’s EOB pointer so new packets will be

stored after the remaining unsent packet. save_block() thus ensures that each

block begins and ends on the boundary of a packet; this makes playback more

efficient because it eliminates the need to copy parts of packets that straddle

blocks and guarantees that no packet in one block is delayed in its dispatch

because part of it is in the subsequent block.

Whether or not a packet was read, mcast_receive() checks whether an RTCP

packet should be generated using RTPComm::ctrl_ready(), which is a wrapper

method for Timer::ready_to_send(). If an RTCP packet should be generated,

mcast_receive() calls RTPComm::send_ctrl().

87
IV.2.6.3 Automatic Suspension of Recording

Occasionally, relatively long intervals pass during which no RTP session

member sends data. It is common, for example, that a lecture source will test its

equipment by sending small amounts of data before the actual start of the

session, then cease transmitting until the formal start time. Multicast sessions

from conferences that span several days often do not transmit data continuously,

but only at specified times, e.g., to present keynote speeches.

The DMRP recorder does not permit interactive use as, e.g., the MBone VCR

does, so even if a human operator is present, he cannot manually "pause" the

recording; the recorder either runs forever or is interrupted. Moreover, it is

sometimes impractical for a human being to be present. A major reason to

record a session, after all, is likely to be one’s inability to watch it live.

Since the recorder continues to run during periods of inactivity, i.e., when no

data are being transmitted, it automatically detects the absence of data and

ceases recording. Such behavior saves space on the storage device, since the

recorder would otherwise continue to store RTCP packets, which are transmitted

irrespective of whether data are transmitted. mcast_receive() uses a counter,

cycles_sans_data, to count the number of sequential loop iterations without

receiving data. By default, if cycles_sans_data exceeds a threshold value, the

recorder stops saving RTCP packets. Receipt of a data packet decrements

cycles_sans_data if it is greater than zero. The reason for decrementing the

88
counter, rather than resetting it directly to zero, is that short bursts of data—e.g.,

white noise that exceeds the silence suppression threshold on vat—occasionally

are sent to the session by accident. These bursts of data are generally

meaningless, but if they reset cycles_sans_data to zero, they would increase the

amount of time the recorder captured unnecessary RTCP packets.

Decrementing the counter requires data sources to transmit a continuous

sequence of packets to keep the counter well below the cutoff threshold, i.e., to

"buy" time for pauses between data.

The current threshold value, 10, was chosen at random for testing purposes.

Tests with the recorder suggest that this value is too low for real sessions, but

further testing will be necessary to determine a more appropriate value. It should

also be noted that the recording cutoff can be disabled at runtime if desired.

IV.2.6.4 Playback

Playback first requires connecting to the DPSS and DSM. The player can

use the same open_dpss() method as described above, using the default file size

and DPSS server list parameters (the defaults cause the method to assume that

the data set already exists); it may also call open_dpss() with a DPSS set ID

instead of a filename. In either case, the SessionManager invokes

DPSSPOC::open_dpss_r() to set up for retrieving the data from the DPSS.

The player does not "join" the playback session as the recorder joined the

89
original session. The recorder joins the original session as a full participant,

explicitly identifying itself as a recording process. However, the player has no

such distinct identity: the replayed data packets, as well as newly generated

RTCP packets, must be attributed to the original data sender(s) rather than to the

player process. As such, although the player could join the playback session

using join_session(), it would be meaningless to do so, for the player will never

transmit data via the communications endpoints thus created. Instead, the player

calls SessionManager::register_session() to record the playback session’s

address and port in the RTPComm. The RTPHandler object creates the

necessary communications endpoints (IPNetAPs) automatically during playback,

as noted in Section IV.2.3.3.

mcast_send() is the playback analogue to mcast_receive(). mcast_send()

reads data from the DPSS and transmits the data, packet by packet (recall that

the original RTP and RTCP packets are saved without alteration), until there are

no more to send.

mcast_send() implements the scheme described in Section III.2, whereby the

request for the next DPSS block is issued just before the current block is parsed.

The time required by the DPSS to satisfy the request is thus at least partially

subsumed within the time needed to process the current block’s data. The cycle

is primed by an initial call to DPSSPOC::read_blocks(), which is a wrapper for

DPSSPOC::request_blocks and DPSSPOC::receive_blocks(), followed by a call

90
to DPSSPOC::request_blocks(). DPSSPOC::read_blocks() obtains the first block

of the data for immediate processing, while DPSSPOC::request_blocks() begins

the request-next/process-current/read-next cycle. At present, only one block at a

time is requested and processed, although there is no reason why more could

not be handled.

Each DPSS block is parsed packet by packet. mcast_send() performs a

crude check for data corruption by examining the prepended PktInfo, then

passes the packet to RTPComm::make_pkt() for further handling. Assuming no

error occurs, make_pkt() returns the packet’s size, not including the size of the

PktInfo. If the saved packet was RTCP, mcast_send() updates its pointer into

the block buffer (the EOB pointer, analogous to the pointer in mcast_receive())

and begins processing the next packet in the block. Otherwise, mcast_send()

sets a "data pending" flag to indicate that a data packet is awaiting transmission

and calls RTPComm::wait_send_next() to wait until the next packet (saved RTP

or newly generated RTCP) should be sent.

Upon return from wait_send_next(), mcast_send() knows only that at least

one packet is ready to be sent, but not which type. mcast_send() therefore

checks both whether a data packet should be sent and whether an RTCP packet

should be built and sent; it is even possible that both conditions will be true. If

the most recently processed data packet is dispatched, the EOB pointer is

91
updated and the "data pending" flag is cleared.

Following packet dispatch, mcast_send() loops back to parse the next packet

from the DPSS block. If, however, the currently pending data packet was not

sent, mcast_send() skips the parsing step and proceeds to call wait_send_next().

In this way, a long pause in data transmission during the original session is

preserved on playback, but the player is still able to dispatch its required periodic

RTCP packets.

IV.2.6.5 Shutdown

The SessionManager contains an AppStatus object (see Section IV.2.7) that

acts as a status flag for the loop in mcast_receive(). mcast_receive() runs until

either an error occurs or the AppStatus object indicates that mcast_receive()

should return. Usually the recorder triggers such a return as a result of some

event external to mcast_receive(), e.g., a user-requested interrupt. However,

mcast_receive() may return on its own it if discovers that no more space is

available on the DPSS. See Section IV.2.7 and Section IV.3 for more details.

mcast_send() reads through blocks packet by packet until it encounters an

error or until it determines there are no more blocks to read (or until the user

interrupts the process, whichever occurs first; see Section IV.4 for more detail).

Like mcast_receive(), mcast_send()’s main packet-processing loop checks the

SessionManager’s AppStatus object to see if it should break out of the loop and

92
return. mcast_send() itself will change the AppStatus object to indicate it is done

if it finishes processing all available blocks; this is the normal means by which the

routine quits.

Returning from mcast_receive() or mcast_send() does not end the DMRP

session. The recorder or player must still explicitly exit the session, which means

it must call the SessionManager methods close_dpss() and leave_session().

close_dpss() first flushes any pending data to the DPSS if the SessionManager

was recording (the data constitute the last block of the data set), then calls

DPSSPOC::close_dpss() to shut down all connections to the DPSS and DSM.

leave_session() is a wrapper method for RTPComm::closecomm().

IV.2.7 Application Status Class: AppStatus

In the original implementation of the recorder and player, the

SessionManager’s functionality resided within the application itself. Because all

of the required state was declared global to the application, it was possible for a

Unix signal handler to ensure that on receipt of a signal—e.g., SIGINT—the

application would shut down gracefully.

The SessionManager class was developed because the recorder and player

had to be able to accommodate multiple concurrent RTP sessions. Each

SessionManager, operating independently of other SessionManagers, clearly

was suitable for implementation as a single thread, particularly when executing

93
mcast_receive() or mcast_send(). However, the semantics of Unix signal

handling in a multithreaded application made it necessary to modify the original

signal handling mechanism.

By default, most signals can be delivered to any thread in the process. In

theory, every thread could be allowed to handle the signals by installing

appropriate handlers. However, for simplicity the DMRP allows only the initial

thread to receive signals for the entire process; the initial thread then takes

whatever steps are necessary to communicate with all other threads.

In the original non-threaded implementation, mcast_receive() could only be

exited by the process’ receipt of an asynchronous event, i.e., a signal.

(mcast_send() returned, in the absence of error, when it ran out of data.) To

allow controlled, synchronous communication between the initial thread and the

SessionManager threads, it was necessary to modify mcast_receive() so that it

checked for external events, e.g., the request by the initial thread for

mcast_receive() to quit.

Thus on each loop iteration, mcast_request() now checks the condition of the

SessionManager’s AppStatus object. The AppStatus at heart is merely a flag

and a small set of accessor methods to simplify the flag’s use. However, the

class also includes a mutex to ensure that the flag can be accessed and modified

consistently by multiple threads. The methods lock() and unlock(), used by all

the other AppStatus methods to guarantee that only a single thread at a time can

94
read or modify the flag, are merely wrappers for pthread_mutex_lock() and

pthread_mutex_unlock().

At present, the only AppStatus methods used by other DMRP objects are

done() and doneq(). done() sets the AppStatus’ flag to indicate that the

application is ready to shut down. doneq() checks whether the flag indicates

"done," returning 1 if so and 0 otherwise. In addition to checking both for packets

to read and for a timeout, mcast_receive() calls doneq() on each loop iteration,

breaking out of the loop if doneq() returns 1.

Although the AppStatus class is currently only used to allow the application to

indicate that it wishes to shut down, the class can in principle be used to convey

other asynchronous events in a synchronous fashion. In addition to responding

to data from the network and to timeouts, the packet-processing loop could also

implement user-requested actions like "pause," fast forward," "rewind," and so

on, increasing the DMRP’s range of functionality. The means of posting the

asynchronous event are irrelevant to the responses implemented by the

SessionManager or other classes, so it would be possible to replace the current

terminal-based interface, in which signals are the events, with a GUI in which

user-requested window events trigger the actions. Alternatively, the recorder and

player could monitor the LBL Conference Bus (discussed briefly in [26]) for

messages from applications like LBL’s confcntlr [30]. The AppStatus class

includes the methods get(), set(), and add() to retrieve, to (over)write, and to add

95
to the status flag, respectively, in the expectation that these capabilities will be

useful in future for generalized event posting and monitoring.

Because the AppStatus proved so useful in controlling mcast_receive(),

mcast_send() was also modified to incorporate an AppStatus check in its main

loop.

IV.3 Recorder

The recorder controls one or more SessionManagers saving RTP/RTCP data

to the DPSS. It allows the user to specify certain DMRP session elements (e.g.,

the amount of space to reserve on the DPSS for each session) via command-line

flags and/or a configuration file. It spawns all necessary threads and coordinates

96
their shutdown.

Figure 8 shows the recorder operating alongside vic, vat, and sdr. The

recorder is capturing the session currently being displayed by vic and vat;

Figure 8. DMRP recorder and other MBone tools

97
however, vic and vat are operating independently and are not required for the

recorder to function. Figure 9 shows the recorder’s terminal window from Figure

Figure 9. DMRP recorder (detail)

98
8 in greater detail. (The recorder was invoked as "listener.test" in the figure.)

Recorder initialization, which occurs in the function init(), largely consists of

argument parsing, followed by SessionManager construction and DPSS/DSM

connection via SessionManager::open_dpss(). Of the fourteen command-line

options currently available, four are most often used. The -F option allows the

user to provide most of the RTP session parameters via an MBone VCR

conference configuration file; in Figure 9, the file is called "cspan.vcr."19 The

parameters include the address, port, and TTL to be used for each session (the

file can specify more than one). The configuration file’s contents are used to

initialize DMRPSessionInfo structures, each of which is in turn used to construct

a SessionManager object. Figure 10 shows the DMRPSessionInfo structure.

19.The MBone VCR file format was chosen for compatibility: Bill Fenner of
Xerox PARC wrote a widely available script that can be invoked by sdr to
generate such a configuration file for an advertised conference.

struct DMRPSessionInfo
{
 char *addr;
 u_short port;
 int ttl;
 int set_id;
 char *filename;
 u_int filesz;
 u_int bandwidth;
 int duration;
}

Figure 10. DMRPSessionInfo structure

99
"addr" is the unicast or multicast address (expressed as a dotted-decimal IP

number string) and "port" is the 16-bit port identifier on which the recorder should

listen for data. "ttl" denotes the TTL to be associated with the session’s packets.

"filename" is intended as an aid to human auditors of the DPSS/DSM. "filesz" is

the number of bytes to reserve for a session’s data, not including RTCP (the

recorder automatically allocates a greater number to allow for RTCP). "duration"

is the amount of time, in minutes, that the recorder should run. "set_id" is useful

only to the player and is discussed in Section IV.4; "bandwidth" is currently

unused.

The -S flag is required to list the DPSS server hosts on which the data should

be stored. The server list must be parsed as a single argument by the Unix shell,

so it must consist either of a comma-separated list without spaces, or a list,

possibly space-separated, enclosed by quotation marks. (DPSS clients use the

DPSSHOST environmental variable to set the DSM / DPSS master host.)

The -s flag allows the user to specify how many bytes to allocate for each

data set (corresponding to an RTP session); the default is 1,073,741,824 bytes,

or 1 GB.20 (In Figure 9, the recorder is shown requesting 10,485,760 bytes, or

10 MB.)

In an attempt to automate recording, the recorder allows the user to set a

20.This has proven to be somewhat more than is usually necessary for cur-
rent MBone data rates and session duration.

100
recording length via the -l option; the length is specified in minutes. This

eliminates the need for a human user to monitor a session or sessions whose

duration is announced in advance, and facilitates automated recording via a tool

like WALDO (see Section III.3), which can launch a recorder process without

requiring a mechanism to deliver it a signal or otherwise to micromanage its

activities.

Following initialization, the recorder calls the function join_sessions(), which in

turn invokes SessionManager::join_session() for each SessionManager object.

join_sessions() also ensures that each RTPComm has the same "session start"

time, so that packet time offsets are measured from the same starting time

across all DMRP sessions. join_sessions() returns the number of sessions for

which SessionManager::join_session() did not return an error. In theory, the

recorder could operate as long as at least one SessionManager successfully

joined its session; at present, however, the recorder quits if any SessionManager

failed to do so.

After a successful return from join_sessions(), the initial thread creates a

thread for each SessionManager; each such session thread immediately begins

executing SessionManager::mcast_receive(). If the user requested a timeout via

the recorder’s -l option, the initial thread spawns a timer thread that issues a call

to alarm(), which will result in a SIGALRM being sent to the process when it has

101
run for the requested amount of time. Finally, the initial thread waits for signals.

Prior to creating other threads, the initial thread blocks the signals it wishes to

catch using the POSIX function pthread_sigmask(); in the recorder’s case, the

signals of interest are SIGINT and SIGALRM. pthread_sigmask() changes the

default action taken in response to the specified signals, modifying the thread’s

signal mask. In the case of the recorder, the signals are blocked, or queued for

delivery (as opposed to being delivered asynchronously as is normal). Any new

thread inherits its creator’s signal mask, so that all threads block these signals,

enabling the initial thread to use the system call sigwait() to catch the blocked

signals synchronously. sigwait() waits for one of a set of signals to be posted to

the process; the set of signals is passed as a parameter to the call.

A SIGINT or SIGALRM received by sigwait() causes a controlled shutdown.

The initial thread calls AppStatus::done() for each SessionManager via the

SessionManager wrapper routine quit(). Then the initial thread joins each

session thread, releasing the resources associated with the thread, like memory.

Note that the SessionManager objects are not deallocated with the session

threads since the initial thread allocated their memory. Finally, the initial thread

calls the recorder function close_session() for each SessionManager.

close_session() first calls SessionManager::close_dpss(), then

SessionManager::leave_session().

102
IV.4 Player

The player controls one or more SessionManagers playing RTP/RTCP data

from the DPSS. It allows the user to specify DMRP session elements via

command-line flags and/or a configuration file, spawns all necessary threads,

and coordinates their shutdown, like the recorder.

The player’s operation is shown in Figure 11. The player is running in the

terminal window on the left of the figure. The session being replayed consists of

a single video session with two senders, as indicated by the two vic windows at

the bottom center, but no corresponding audio; thus the vat client at the top right

corner of Figure 11 shows no other session participants and no audio output.

Figure 11. DMRP player and client applications

103
(The original senders had muted their audio devices due to the noisiness of the

environment in which the original conference had been recorded.)

The player’s command-line interface is shown in more detail in Figure 12 .

(The player was invoked as "player.test.") Note that the only command-line

option provided was a configuration file via the -F option. Also, by default, each

session thread prints the number of each DPSS block as it is being processed;

this verboseness helps to diagnose errors such as the player sending to a

Figure 12. DMRP player (detail)

104
different destination address than the client expected. Finally, the title bar of the

client vic window visible in Figure 12 indicates that the sender "SC97 DOE2000

(LBL)" is not live, but is rather being replayed by the DMRP.

Player initialization is similar to recorder initialization: the function init() parses

arguments, constructs SessionManager objects (one per session to be replayed),

and connects them to the DPSS and DSM via open_dpss(). The most important

command-line option flag is -F for the configuration file, which must be in MBone

VCR format. Note that the configuration file must include an address, port, and

TTL for each medium to be replayed, and it is the user’s responsibility to ensure

these do not conflict with existing sessions. sdr can be used to choose these

parameters by creating a new presentation to be advertised; sdr can also

generate the configuration file containing these parameters for the player.

The configuration file must also specify what DPSS set(s) contain the data to

be replayed. Although the recorder generates a name for each set (the

DMRPSessionInfo "filename" field mentioned in Section IV.3), that name is not

guaranteed to be unique on the DPSS; in fact, it is guaranteed to be the same for

multiple recordings (in parallel or in sequence) that use the same configuration

file. Moreover, the player requires the original configuration file to reconstruct the

names chosen by the recorder. For these reasons, the DMRP extends the

MBone VCR configuration file format to allow a DPSS set ID to be designated for

each medium: this is used to fill in the DMRPSessionInfo "set_id" field. Because

105
the set ID is guaranteed to be unique on a given DPSS, users are encouraged to

identify sets for playback in this way rather than by name.

Following a successful return from init(), the player calls register_sessions(),

which calls register_session() for each SessionManager and, like the recorder

function join_sessions(), ensures a uniform "session start" time across all

RTPComm objects. Then the player creates a session thread for each

SessionManager. Each session thread executes

SessionManager::mcast_send().

Shutdown is handled somewhat differently from the recorder. Each session

thread runs to completion, i.e., until there are no more blocks to read from the

DPSS. Following a successful return from mcast_send(), the session thread

calls the player function dec_thread_count(), which decrements a global counter

of the number of active session threads. The last thread to complete detects that

the counter is zero after it calls dec_thread_count() and sends the player process

a SIGINT. Because the player, like the recorder, created its session threads with

SIGINT blocked, the signal is delivered to the initial thread, which is blocked in

sigwait(). Following return from sigwait() (as a result of signal delivery), the

player joins each session thread and invokes close_session() for each

SessionManager.

CHAPTER V

PERFORMANCE AND SCALABILITY

The following discussion considers the performance and scalability of the

DPSS and DMRP.

Because the DPSS consists of multiple disks, it inherently has greater total

storage capacity than any single disk. Moreover, the DPSS can parallelize disk

accesses and network sends across its multiple disks in a way that is impossible

to duplicate on any single host with a single disk. This means that the DPSS can

take full advantage of network bandwidths that exceed the maximum throughput

of any single disk.

For example, a DPSS in current use for testing consists of three server hosts,

each of which is a Sun Microsystems UltraSPARC I workstation with an OC-3

ATM interface capable of a raw throughput of 155 Mb/s. Cavanaugh [4]

suggests that 135 Mb/s is the maximum data rate in practice after taking

link-layer and ATM protocol overhead into account (this does not include TCP

and IP protocol overhead, but these can be considered minimal for sufficiently

large TCP packets and assuming no fragmentation at the IP level). Attached to

each host are two disks, each of which has a storage capacity of 4501 MB (4.4
106

107
GB) and a raw throughput measured at approximately 14 MB/s, or 112 Mb/s;

note that neither of these disks is sufficient to saturate a server’s ATM network

interface by itself. In toto, this 3-server configuration is theoretically capable of a

sustained transmission rate of approximately 405 Mb/s. Measurements of DPSS

throughput capability have demonstrated 80 Mb/s throughput rates per disk

server for an aggregate of 240 Mb/s for this configuration. (It is worth noting that

this throughput measurement was made with a DPSS client that ignored the

data; this figure can therefore be considered an upper limit for what "real" clients

can expect to achieve.) Details of this testing are provided in Appendix A.1.

It is useful to compare the DPSS’ data rate with currently achievable MBone

data rates. For pulse code modulation (PCM)-encoded data [33]—the default

audio encoding used by vat—320-byte packets of data are transmitted every 40

ms. The RTP header adds 12 bytes, UDP adds 8, and IP adds 20 for a protocol

overhead of 40 bytes (12.5%) per packet, resulting in a raw data rate of 9000

bytes/s, or a useful data rate of 8000 bytes/s (64 Kb/s). vic’s default encoding,

H.261 [40], can generate up to 30 frames/s, but the frame size varies. For a

high-bandwidth video session, an average frame is 2700 bytes (according to

observation of typical high-bandwidth video sessions). Because vic typically

breaks up frames into three or four RTP packets, 120-160 bytes of each frame

are required for network protocol headers. Thus a high-bandwidth video session

has a raw data rate of between 84,600 bytes/s (660 Kb/s) and 85,800 bytes/s

108
(670 Kb/s), and a useful data rate of approximately 81,000 bytes/s (632 Kb/s).

Thus the combined audio and video from a single participant can be expected

to require approximately 700 Kb/s of bandwidth. The DPSS described above can

in theory sustain approximately 350 such combined audio and video sessions

simultaneously (either recording or playing), assuming that the underlying

network is capable of providing the bandwidth. Unfortunately it is not currently

feasible to undertake such a test in the current LBL environment due to

insufficient hosts on which to run the recorders or players.

Tests (described in Appendix A.2) have demonstrated that a single DMRP

player can support twelve conferences of combined audio and video, each

conference averaging 700 Kb/s in throughput, for a total of 8.2 Mb/s throughput

for the application. Furthermore, a DMRP recorder can record twelve such

conferences with minimal loss beyond that caused by congestion.

In these tests, a player on a Sun Microsystems Ultra Enterprise Server (with

~1 GB of memory and a 620 Mb/s OC-12 ATM interface) was used to play back

three separately recorded presentations (each consisting of one audio and one

associated video session with one data source per session) in parallel: that is,

the three presentations—or six RTP sessions—were replayed simultaneously.

Furthermore, the simultaneous replay was repeated to four new conferences,

where each new conference consisted of an audio session and a video session.

Each RTP session corresponds to a DPSS data set and each data set to a client,

109
so the player simulated 24 separate DPSS reading clients at the same time. The

recorder (running on a second, similarly configured Ultra Enterprise Server) was

used to record the four new conferences. Because each conference consisted of

an audio and a video session, the recorder simulated eight separate DPSS

writing clients simultaneously. Thus the DPSS was able to serve 32 clients,

receiving data at approximately 8 Mb/s while transmitting at the same rate.

Playback of the four newly recorded presentations showed that little data had

been lost.

CHAPTER VI

FUTURE WORK

The DMRP has much room for improvement. Perhaps its most obvious flaw

is its lack of interactivity: there is no way for a user to change its behavior once it

has started running. Although originally envisioned as middleware that would not

require extensive user control, in practice it has turned out to be similar enough

to a hardware audio or video recorder that a GUI should be added to allow

pausing, stopping, rewinding, fast-forwarding, and so on. Some modification to

the SessionManager and AppStatus classes will be necessary to support this

new functionality. Also, as noted in Section IV.2.7, the AppStatus class should

be modified to allow remote control, perhaps via RTSP (see Section II.1.3). Also,

in order to minimize the difficulty of compiling and installing the GUI-based

application, the recorder and player should be combined into a single program.

One of the DMRP’s most troublesome shortcomings is its inability to request

additional space dynamically from the DPSS. Because the DPSS was originally

designed to accommodate read-mostly data sets whose size was known in

advance, the API does not provide a simple way to request more space after the

initial allocation. However, the code to do so has been written for other
110

111
applications and the DPSSPOC class should be modified accordingly.

The DMRP’s interaction with the DPSS should be made more efficient by

adding a double-buffering system. At present, when the recorder needs to save

a block, mcast_receive() pauses in its packet processing in order to send the

block to the DPSS. Depending on the data rate, several data packets may be

lost in this interval. A more efficient mechanism would employ an additional

buffer and an additional thread: when one buffer is full (i.e., ready to be stored on

the DPSS), the thread executing mcast_receive() would begin saving into the

other buffer with virtually no delay; meanwhile, the new thread would save the full

buffer to the DPSS. A similar problem exists in the player and a similar

mechanism should be introduced for reading blocks from the DPSS during

playback.

The thread-unsafe nature of the DPSS client library requires that each

session thread in the recorder and player establish its own connection to the

DPSS and maintain its own state in the form of a distinct IssHandle (see Section

IV.2.5). Much of this state is redundant: for example, all the session threads will

store data to the same DPSS disks or read data from the same server hosts. If

the DMRP could eliminate the redundant state, it could reduce its memory

footprint. Whether it is actually possible to synchronize access to shared DPSS

client library state without corrupting that state is unclear, however.

The DMRP violates RTCP’s requirements in a few minor respects. Although

112
the specification calls for an SSRC’s CNAME to be consistent throughout a

session, the player may not be able to assign the source’s correct CNAME when

data playback begins because the player has to wait until it reads a saved RTCP

packet from the source in the saved data stream. Hence the CNAME for a

source may change, particularly if it sends data at or near the beginning of

playback. The violation could be corrected by creating a cache of SSRC

identifying information. The cache could be created either during recording,

off-line between recording and playback, or just before playback commenced; it

could be stored with the data set or off-line as part of WALDO.

Once the RTPCtrlHandler has filled in an SDES NAME for an SSRC on

playback, it ignores any changes that may have occurred in the original session

(e.g., a user may not have set his NAME correctly in his tool prior to sending

data, but may have done so subsequently). Again, caching the SSRC identifying

information would correct this playback error, as would modifying the

RTPCtrlHandler to notice when such information changes for an SSRC. (Note

that showing an incorrect NAME does not violate RTCP, nor does the protocol

prohibit modifying the NAME.)

For security, the player should generate new RTP timestamps, sequence

numbers, and SSRC IDs for all data packets, as noted in Section IV.2.3.4.

Playback as currently implemented makes the generation of RTCP packets at

correct intervals for each playback source difficult, as noted in Section IV.2.3.5.

113
The RTPCtrlHandler should be modified to support multiple interval timers so that

each advertised SSRC appears to send its own RTCP packets at the proper

times.

At present, the DMRP recorder does not reorder out-of-order packets before

storing them, nor does the player reorder out-of-order packets before

(re)transmitting them. Although misordering has not been a significant problem

in tests to date, some kind of reordering—perhaps performed off-line between

recording and playback—would prevent the player from reproducing the original

session’s errors and could be important in an environment where misordering

occurs more frequently, e.g., on an Ethernet.

As noted in Section IV.2.6.3, automatic recording suspension has not been

adequately tested to find the proper number of non-data cycles that should

elapse before shutting off packet saving.

During testing with real MBone sessions, the DMRP recorder showed a lack

of robustness: it crashed unexpectedly when an advertised but initially inactive

video session suddenly became active, i.e., a participant began sending low-rate

video. More testing is needed to determine the cause of the problem.

The RTPFormat class needs to know about more payload formats; at present

only H.261 (for video) and PCM (for audio) have been tested extensively,

although several other audio formats have been tested for short times. Attempts

to test JPEG video were unsuccessful because of problems generating a

114
sustained, high-bandwidth source stream using vic.

CHAPTER VII

CONCLUSIONS

The DMRP mediates between multicast multimedia traffic on the Internet and

a distributed server, the DPSS. The DMRP captures RTPv2 and RTCP traffic

from one or more RTP sessions, accumulating data into large blocks and saving

these blocks onto the DPSS. On playback, the DMRP reproduces the original

sessions’ flow of data by reading blocks and parsing them, packet by packet,

according to their original timing. During playback, the DMRP also retransmits

appropriate identifying information so that data can be attributed to the original

sources rather than to the player process.

Whether recording or playing, the DMRP attempts to comply fully with the

requirements of RTP and RTCP so that it is a full participant in an RTP session:

in particular, the DMRP transmits RTCP packets at appropriate intervals.

Protocol compliance is important to allow data sources to monitor and, if

necessary, to modify their behavior based on current conditions.

The DMRP’s implementation strives to make modifications relatively easy

while taking advantage of existing technology. The use of object technology

provides a clean organization of, and division between, code modules that
115

116
resembles the original design; it also permits the extension of the existing class

hierarchy to allow new, unanticipated behavior if it is desirable or necessary.

Moreover, the choice of C++ as the implementation language permits the DMRP

to take advantage of the C++ Standard Template Library as well as the

substantial existing C language DPSS API. Implementing much of the

functionality via concurrently running threads allows a modest degree of

scalability.

117
REFERENCES

 [1] Berc, L., W. Fenner, R. Frederick and S. McCanne. 1996. RTP Payload
Format for JPEG-compressed Video. IETF Request for Comments 2035.

 [2] Braden, R., L. Zhang, S. Berson, S. Herzog and S. Jamin. 1997.
Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
Specification. IETF Request for Comments 2205.

 [3] Butenhof, D. R. 1997. Programming with POSIX(R) Threads.
Addison-Wesley professional computing series. Reading, Mass:
Addison-Wesley.

 [4] Cavanaugh, J. 1994. "Protocol Overhead in IP/ATM Networks."
Available from http://www.msci.magic.net/Papers.html.

 [5] Chen, L. T. and D. Rotem. 1993. "Declustering Objects for
Visualization," Proc. of the 19th VLDB (Very Large Database) Conference.

 [6] Deering, Steve. 1989. Host Extensions for IP Multicasting. IETF
Request for Comments 1112.

 [7] Eriksson, Hans. 1994. "MBONE: The Multicast Backbone,"
Communications of the ACM (August 1994/Vol 37, No. 8): 54-60.

 [8] Fenner, W. 1997. Internet Group Management Protocol, Version 2.
IETF Internet Draft draft-ietf-idmr-igmp-v2-06.txt (January 1997; work in
progress).

 [9] Fielding, R., J. Gettys, J. Mogul, H. Frystyk and T. Berners-Lee. 1997.
Hypertext Transfer Protocol -- HTTP/1.1. IETF Request for Comments
2068.

 [10] Floyd, S., V. Jacobson, C. Liu, S. McCanne and L. Zhang. 1995. "A
Reliable Multicast Framework for Light-weight Sessions and Application
Level Framing," ACM SIGCOMM 95 (August 1995): 342-356.

 [11] Greiman, W., W. E. Johnston, C. McParland, D. Olson, B. Tierney, C.
Tull. 1997. "High-Speed Distributed Data Handling for HENP,"
International Conference on Computing in High Energy Physics (April

118
1997), available from http://www-itg.lbl.gov/STAR/.

 [12] Handley, M. 1996. SAP: Session Announcement Protocol. IETF
Internet Draft draft-ietf-mmusic-sap-00.ps (November 1996; work in
progress).

 [13] Handley, M., J. Crowcroft, C. Bormann and J. Ott. 1997. The Internet
Multimedia Conferencing Architecture. IETF Internet Draft
draft-ietf-mmusic-confarch-00.txt (July 1997; work in progress).

 [14] Handley, M. and V. Jacobson. 1997. SDP: Session Description
Protocol. IETF Internet Draft draft-ietf-mmusic-sdp-04.ps (September
1997; work in progress).

 [15] Handley, M., H. Schulzrinne and E. Schooler. 1997. SIP: Session
Initiation Protocol. IETF Internet Draft draft-ietf-mmusic-sip-03.txt (July
1997; work in progress).

 [16] Hoffman, D., G. Fernando and V. Goyal. 1996. RTP Payload Format
for MPEG1/MPEG2 Video. IETF Request for Comments 2038.

[17] Holfelder, W. 1995. "Mbone VCR - Video Conference Recording on the
MBone," ACM Multimedia 95 (November 1995).

 [18] Hoo, G. 1996. tv_sim home page. Available at
http://www-itg.lbl.gov/ISS/userguide/tv_sim.html.

 [19] Johnston, W., G. Jin, C. Larsen, J. Lee, G. Hoo, M. Thompson and B.
Tierney. 1997. "Real-Time Digital Libraries based on Widely Distributed,
High Performance Management of Large-Data-Objects" (draft submitted to
International Journal of Digital Libraries, special issue on "Digital Libraries
in Medicine," available at
http://www-itg.lbl.gov/WALDO/DigLib/LargeDataObj-Arch.fm.html).

 [20] Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin and J. R.
Lee. 1994. "Distributed Parallel Data Storage Systems: A Scalable
Approach to High Speed Image Servers," ACM Multimedia 1994.

 [21] Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin and J. R.
Lee. 1994. "Using High Speed Networks to Enable Distributed Parallel

119
Image Server Systems," Supercomputing ’94.

 [22] Johnston, W., B. Tierney, J. Lee, G. Hoo and M. Thompson. 1996.
"Distributed Large Data-Object Environments: End-to-End Performance
Analysis of High Speed Distributed Storage Systems in Wide Area ATM
Networks," Fifth NASA/Goddard Conference on Mass Storage Systems
and Technologies (available at
http://www-itg.lbl.gov/%7Ejohnston/DPSS.NASA.MSS.Symp96.9.fm.html).

 [23] Kouvelas, I. and V. Hardman. 1997. "Overcoming Workstation
Scheduling Problems in a Real-Time Audio Tool," Proceedings of Usenix
Annual Technical Conference (January 1997): 235-242.

 [24] Leclerc, Y. and S. Q. Lau. 1994. "TerraVision: A Terrain Visualization
System," Technical Note 540, SRI International, available from
http://www.ai.sri.com/~magic/terravision.html.

 [25] McCanne, S. 1992. "A Distributed Whiteboard for Network
Conferencing" (unpublished term project report, University of California,
Berkeley, May 25, 1992; available from
http://www.cs.berkeley.edu/~mccanne/unpublished.html#wb-work).

 [26] McCanne, S. and V. Jacobson. 1995. "vic: A Flexible Framework for
Packet Video," ACM Multimedia (November 1995): 511-522.

 [27] Mills, D. 1992. Network Time Protocol (Version 3) Specification,
Implementation and Analysis. IETF Request for Comments 1305.

 [28] Network Research Group, Lawrence Berkeley National Laboratory.
LBNL Audio Conferencing Tool (vat) home page. Available at
http://www-nrg.ee.lbl.gov/vat/.

 [29] Perkins, C., I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J.C.
Bolot, A. Vega-Garcia and S. Fosse-Parisis. 1997. RTP Payload for
Redundant Audio Data. IETF Request for Comments 2198.

 [30] Perry, M. 1997. Confcntlr home page. Available at

120
http://www-itg.lbl.gov/mbone/confcntlr.

 [31] Postel, Jon. 1981. Internet Protocol. IETF Request for Comments 791.

 [32] Postel, Jon. 1982. Simple Mail Transfer Protocol. IETF Request for
Comments 821.

 [33] Schulzrinne, H. 1996. RTP Profile for Audio and Video Conferences
with Minimal Control. IETF Request for Comments1890.

 [34] Schulzrinne, H., S. Casner, R. Frederick and V. Jacobson. 1996. RTP:
A Transport Protocol for Real-Time Applications. IETF Request for
Comments 1889.

 [35] Schulzrinne, H., A. Rao and R. Lanphier. 1997. Real Time Streaming
Protocol (RTSP). IETF Internet Draft draft-ietf-mmusic-rtsp-04.txt
(September 1997; work in progress).

 [36] Stepanov, A. and M. Lee. 1995. The Standard Template Library.
Hewlett-Packard. Available from
http://www.cs.rpi.edu/projects/STL/htdocs/stl.html.

 [37] Stroustrup, B. 1991. The C++ Programming Language. Reprinted with
corrections 1995. Reading, Mass: Addison-Wesley.

 [38] Thompson, M., W. Johnston, G. Jin, J. Lee, B. Tierney and J. F.
Terdiman. 1996. "Distributed Health Care Imaging Information Systems."
Available from http://www-itg.lbl.gov/DPSS/Kaiser/.

 [39] Tierney, B., W. Johnston, H. Herzog, G. Hoo, G. Jin and J. Lee. 1994.
"System Issues in Implementing High Speed Distributed Parallel Storage
Systems," Proceedings of the USENIX Symposium on High Speed
Networking.

 [40] Turletti, T. and C. Huitema. 1996. RTP Payload Format for H.261
Video Streams. IETF Request for Comments 2032.

 [41] Wiltzius, D., L. Berc and S. Devadhar. 1996. "BAGNet: Experiences
with an ATM metropolitan-area network," ConneXions 10, no. 3 (March

121
1996).

122
APPENDIX A

Testing Methodologies and Details

A.1 DPSS Throughput Test Methodology

DPSS throughput was measured using a special test client called tv_sim.

tv_sim requests and reads blocks from a DPSS at a user-configurable rate.

Since it ignores the data after reading it from the network, tv_sim is used to

measure the maximum possible transfer rate that a DPSS and client host can

achieve.

tv_sim consists of three processes. The sender creates and sends block

requests to the DPSS master; the requests are randomly chosen from all

available blocks in the data set. The receiver reads blocks from a single DPSS

server; tv_sim spawns a receiver for each DPSS server on which a data set is

loaded. The parent, or master, creates the sender and receivers and controls

their shutdown.

The sender’s request rate can be controlled at two levels. Requests are

broken down into request lists. Receipt of a new request list causes the DPSS to

flush any outstanding requests from the prior list, as described in Section II.2.3.

A user can control both the number of requests per request list and the rate, in

lists per second, at which request lists are sent to the DPSS.

Each receiver reports its rate of data receipt in Mb/s after every 40 blocks and

123
in summary form at program completion. (tv_sim can run indefinitely—i.e., until

the user interrupts the processes—or can be configured to run until some

condition has been met, typically a timeout.) On completion, the sender also

reports the total number of request lists and block requests sent. A user can thus

compare the amount of data requested with the amount received to determine

roughly how much flushing (of unfulfilled requests) took place in the DPSS.

For the tests described in Chapter V, tv_sim ran on a Sun Microsystems Ultra

Enterprise workstation with an OC-12 ATM interface theoretically capable of

absorbing 620 Mb/s, the equivalent of four OC-3 interfaces. Even allowing for

the same reduction in performance predicted by Cavanaugh [4] for OC-3 (155

Mb/s) interfaces, which suggests that the OC-12 interface’s maximum real

capacity is closer to 539-540 Mb/s, we can assume that the client’s interface was

able to absorb the full output of the three servers described in Chapter V, each of

which only possessed an OC-3 interface.

Tests were run to determine the maximum request rate that the DPSS

described in Chapter V could support without significant flushing. Note that

tv_sim is designed to operate on TerraVision-style data sets, whose block size

never exceeds 48 KB (49,152 bytes), so the block request rate mentioned below

is undoubtedly somewhat higher than a client using 64 KB blocks could achieve.

High request list rates resulted in reduced performance because request

flushing occurred too frequently, so eventually the request list rate was limited to

124
between one and five lists per second. The receivers showed maximum

absorption—79-80 Mb/s each—at a request rate of four lists per second, with

175 requests per list. Increasing the number of requests per list or lists per

second beyond this threshold only increased flushing; there was no increase in

data received.

tv_sim is described briefly in [22]; a user guide is available at [18].

A.2 DMRP Test Methodology

To test the number of RTP sessions the recorder and player could support,

three audio/video conferences were individually recorded to the DPSS. Each

conference was approximately six minutes long and had an average aggregate

data rate of 700 Kb/s. Then the player’s conference configuration file was

modified to replay all three conferences simultaneously to a single audio and

single video session so that the three original conferences appeared to be

individual contributors to the new conference, and a recorder captured the new

conference in its entirety.

The new, three-contributor conference (representing six RTP sessions, three

audio and three video) was then replayed to first one, then two, three, and finally

four separate conferences, each consisting of a single audio and a single video

session, and the recorder was used to capture the four conferences. Because

each of the latter conferences consisted of three audio and three video sources,

125
the four conferences represented twelve audio and twelve video sessions, all

running simultaneously and in parallel. While for the DPSS it could not have

represented a great burden—the total throughput of the twelve playback

conferences, each averaging 700 Kb/s, likely did not exceed 10 Mb/s, so the final

combined data transfer rate for the simultaneous playback and recording was

almost certainly less than 20 Mb/s—it apparently represented a maximum

capacity for some aspect of the player, for attempts to play back more sessions

failed because of insufficient operating system resources. The resources in

question may have been kernel memory buffers (mbufs), but this is uncertain.

126
APPENDIX B

DMRP Source Code

This section presents the DMRP’s source code. The DMRP consists of 41

files comprising 12,157 lines of C++ code, according to the Unix utility wc;

approximately 10,000 of these lines implement the 18 classes that perform most

of the DMRP’s work, with the bulk of the remainder being code specific either to

the recorder or to the player. (A small amount of code represents functionality

shared by both that is not part of a class.) No measurement has been made to

determine how many of the lines of "code" are comments.

For brevity, supporting or contextual material (exception handler code,

preprocessor directives such as #includes of system and application header files

and #ifdef statements, debugging code, and some comments) have been

omitted.

B.1 DMRP Shared Classes

Only the class interfaces are presented here.

B.1.1 Networking Classes

B.1.1.1 NetAddr

class NetAddr
{
 public:
 virtual char *get_hostname() = 0;

127
};

B.1.1.2 IPAddr

class IPAddr : public NetAddr
{
 private:
 struct sockaddr_in addr;
 char *net2dotted(struct in_addr &);

 public:
 IPAddr(struct sockaddr_in &sin)
 {
 memcpy(&addr, &sin, (int)sizeof(addr));
 }
 IPAddr(struct in_addr &a, u_short p);
 IPAddr(const char *host, u_short p);
 IPAddr(const IPAddr &);
 IPAddr()
 {
 memset(&addr, 0, (int)sizeof(addr));
 addr.sin_family = AF_INET;
 }
 IPAddr & operator=(const IPAddr &);
 const struct sockaddr_in *get_addr() { return &addr; }
 u_short get_port() { return ntohs(addr.sin_port); }
 u_short get_port_nbo() { return addr.sin_port; }
 char *get_hostname();
 char *get_ipstring() { return(net2dotted(addr.sin_addr)); }
 void set_addr(const struct sockaddr_in &sin)
 {
 memcpy(&addr, &sin, (int)sizeof(addr));
 }
 void set_hostaddr(const struct in_addr &hostaddr)
 {
 memcpy(&addr.sin_addr, &hostaddr,
 (int)sizeof(struct in_addr));
 }
 void set_port(u_short newport)
 {
 addr.sin_port = htons(newport);
 }
 void set_port_nbo(u_short newport)
 {
 addr.sin_port = newport;
 }
 friend int

128
 operator==(const IPAddr &first, const IPAddr &second)
 {
 return(first.addr.sin_addr.s_addr ==
 second.addr.sin_addr.s_addr);
 }
};

B.1.1.3 NetAP

// Network access point ("NetAP")
class NetAP
{
 public:
 virtual int recv(char *buf, int len) = 0;
 virtual int send(const char *buf, int len) = 0;
};

B.1.1.4 IPNetAP

enum ConnType
{
 CONNLESS, CONN
};

class IPNetAP : public NetAP
{
 private:
 IPAddr *local,
 *remote;
 int skt;
 int sskt;
 ConnType conntype;
 int ttl;
 fd_set rdset,
 wrset,
 excset;
 int nonblock(int fd);

 public:
 IPNetAP(IPAddr &, IPAddr &, ConnType, int);
 IPNetAP();
 ~IPNetAP();
 inline int get_skt() { return(skt); }
 inline int get_sskt() { return(sskt); }
 inline int is_connected()
 {
 if (skt < 0)

129
 return(0);
 else
 return(1);
 }
 void set_localaddr(IPAddr &l);
 void set_remoteaddr(IPAddr &r);
 void set_conntype(ConnType ct) { conntype = ct; }
 void set_ttl(int new_ttl) { ttl = new_ttl; }
 void simple_connect();
 void server_setup();
 int simple_accept();
 int mcast_connect(IPAddr &r);
 int mcast_connect(void);
 void disconnect() { (void)close(skt); skt = sskt; }
 /*
 * Polling calls are a little odd. "poll_for_what()" takes
 * "skt"and adds it to the fd_sets specified by "mask."
 * "poll()" only looks at the fd_sets specified by "which,"
 * and returns 0 on a timeout (specified by "to").
 */
 int poll_for_what(int mask);
 int poll(int which, struct timeval *to);
 int recv(char *buf, int len);
 int recvfrom(char *buf, int len, IPAddr *fromhost);
 int send(const char *buf, int len);
 int sendto(const char *buf, int len, IPAddr &tohost);
 const IPAddr *localip() { return local; }
 const IPAddr *remoteip() { return remote; }
};

B.1.2 RTP/RTCP Classes

B.1.2.1 RTPSource

/*
 * XXX A bastardized mix of RFC 1889 sample data
 * structures and my own additions. At some point, this
 * should be cleaned up,perhaps eliminating all traces
 * of the sample code.
 */
class RTPSource
{
 friend class RTPDataHandler;
 friend class RTPCtrlHandler;

 private:
 rtp_source srcinfo;

130
 ui32 ssrc;
 IPAddr *srcaddr;
 char fmt; // types defined in RTPCommon.h
 char pt;
 // XXX Do next two duplicate rtp_source info?
 ui8 rcvd_data;
 ui8 sent_data;
 ui32 npkts_sent;
 ui32 nocts_sent;
 ui32 ntp_sec0;
 ui32 ntp_frac0;
 ui32 last_ntp_sec;
 ui32 last_ntp_frac;
 ui32 rtp_ts0;
 ui32 rtp_ts;
 ui32 ticks_per_us;
 ui32 last_rtp_ts;
 ui32 first_saved_rtp_ts;
 ui16 last_seq;

 private:
 inline void set_last_rtp_ts(ui32 t) { last_rtp_ts = t; }

 protected:
 void init_seq(ui16);
 inline ui8 get_pt(void) { return(pt); }
 inline void set_pt(ui8 new_pt) { pt = new_pt; }
 inline ui8 get_rcvd_data(void) { return(rcvd_data); }
 inline void set_rcvd_data(ui8 v=1) { rcvd_data = v; }
 inline void set_rtp_ts(ui32 ts) { rtp_ts = ts; }
 inline void max_seq(ui16 n) { srcinfo.max_seq = n; }
 inline void cycles(ui32 n) { srcinfo.cycles = n; }
 inline void base_seq(ui32 n) { srcinfo.base_seq = n; }
 inline void bad_seq(ui32 n) { srcinfo.bad_seq = n; }
 inline void received(ui32 n) { srcinfo.received = n; }
 inline void expected_prior(ui32 n)
 {
 srcinfo.expected_prior = n;
 }
 inline void received_prior(ui32 n)
 {
 srcinfo.received_prior = n;
 }
 inline void transit(ui32 n) { srcinfo.transit = n; }
 inline void jitter(ui32 n) { srcinfo.jitter = n; }
 inline rtp_source *get_srcinfo() { return(&srcinfo); }
 inline void set_ssrc(ui32 n) { ssrc = n; }
 int set_srcaddr(const IPAddr &newaddr);

131
 inline void set_sent_data(ui8 yn) { sent_data = yn; }
 inline void set_npkts_sent(ui32 n) { npkts_sent = n; }
 inline void add_npkts_sent(ui32 n) { npkts_sent += n; }
 inline void set_nocts_sent(ui32 n) { nocts_sent = n; }
 inline void add_nocts_sent(ui32 n) { nocts_sent += n; }
 inline void set_ticks_per_us(ui32 n) { ticks_per_us = n; }
 inline void set_last_ntp_sec(ui32 n) { last_ntp_sec = n; }
 inline void set_last_ntp_frac(ui32 n) { last_ntp_frac = n; }
 inline void set_last_seq(ui16 n) { last_seq = n; }
 inline void set_first_saved_rtp_ts(ui32 n)
 {
 first_saved_rtp_ts = n;
 }

 public:
 inline RTPSource(ui32 new_ssrc = 0, ui16 seq = 0)
 {
 RTPSource(NULL, new_ssrc, seq);
 }
 RTPSource(const IPAddr *, ui32, ui16);
 inline ui16 max_seq() { return(srcinfo.max_seq); }
 inline ui32 cycles() { return(srcinfo.cycles); }
 inline ui32 base_seq() { return(srcinfo.base_seq); }
 inline ui32 bad_seq() { return(srcinfo.bad_seq); }
 inline ui32 probation() { return(srcinfo.probation); }
 inline ui32 received() { return(srcinfo.received); }
 inline ui32 expected_prior() { return(srcinfo.expected_prior); }
 inline ui32 received_prior() { return(srcinfo.received_prior); }
 inline ui32 transit() { return(srcinfo.transit); }
 inline ui32 jitter() { return(srcinfo.jitter); }
 inline ui32 get_ssrc() { return(ssrc); }
 inline const IPAddr *get_addr() { return(srcaddr); }
 inline ui8 get_sent_data() { return(sent_data); }
 inline ui32 get_npkts_sent() { return(npkts_sent); }
 inline ui32 get_nocts_sent() { return(nocts_sent); }
 inline ui32 get_ticks_per_us() { return(ticks_per_us); }
 inline ui32 get_last_ntp_sec() { return(last_ntp_sec); }
 inline ui32 get_last_ntp_frac() { return(last_ntp_frac); }
 inline ui32 get_ntp_sec0() { return(ntp_sec0); }
 inline ui32 get_ntp_frac0() { return(ntp_frac0); }
 inline ui32 get_rtp_ts0() { return(rtp_ts0); }
 inline ui32 get_rtp_ts(void) { return(rtp_ts); }
 inline ui32 get_last_rtp_ts(void) { return(last_rtp_ts); }
 inline ui32 get_first_saved_rtp_ts(void)
 {
 return(first_saved_rtp_ts);
 }
 inline ui16 get_last_seq() { return(last_seq); }

132
 void print_state();
};

B.1.2.2 RTPSourceList

// map<key-type, value-type, comparator<key-type> >
typedef map<ui32, RTPSource, less<ui32> > rtpsrcmap;

class RTPSourceList
{
 private:
 ui32 dbg;
 rtpsrcmap list;
 map <int, ui32, less<int> > ssrcids;

 protected:
 void add(ui32, const IPAddr *);
 int check(ui32);

 public:
 RTPSourceList(ui32 level=1) { dbg = level; }
 inline void debug(ui32 level=1) { dbg = level; }
 inline ui32 nsrcs() { return(list.size()); }
 RTPSource *get_source(ui32, const IPAddr *);
 ui32 get_ssrc(ui32 i);
 inline void print_stats(RTPSource *s) { s->print_state(); }
 void print_stats(void);
};

B.1.2.3 RTPSession

class RTPSession
{
 // Variables
 private:
 ui32 dbg;
 ui32 rand_seed; // to use as arg to random32() later
 RTPSourceList members;
 ui32 bw; // bandwidth for session, bytes/s

 // Methods
 public:
 RTPSession(ui32 level=1);
 inline void debug(ui32 level=1) { dbg = level; }
 inline void set_bw(ui32 bandwidth) { bw = bandwidth; }
 inline ui32 get_bw(void) { return bw; }
 inline RTPSource *get_member(ui32 ssrc, const IPAddr *addr)

133
 {
 return(members.get_source(ssrc, addr));
 }
 inline ui32 get_member_ssrc(ui32 i)
 {
 return(members.get_ssrc(i));
 }
 inline ui32 get_n_members(void) { return(members.nsrcs()); }
 inline const RTPSourceList &get_members(void)
 {
 return(members);
 }
 inline void print_stats(RTPSource *s) { s->print_state(); }
 inline void print_stats(void) { members.print_stats(); }
 inline int ssrc_in_use(ui32 ssrc)
 {
 ui32 i;

 for (i = 0; i < get_n_members(); ++i)
 if (ssrc == get_member_ssrc(i)) return(1);
 return(0);
 }
};

B.1.2.4 RTPFormat

#define NTYPES 256

class RTPFormat
{
 // variables
 private:
 typedef struct
 {
 char *name;
 int sample_rate; // units: Hz or frames/s
 int bps; // bits/sample; -1 if not sample-based
 int bw; // bandwidth
 int reserved1; // not used
 int reserved2; // not used
 }
 _format;

 /*
 * Each static payload in RFC 1890 has a number assigned
 * to it; that number is used as the index into f[]
 */

134
 _format f[NTYPES];

 // routines
 private:
 void init_type(int, char *, int, int, int);

 public:
 RTPFormat(void);
 int is_defined(int); // is format defined?
 int get_bps(int); // get bits/s
 int get_srate(int); // get sample rate (Hz)
 int get_bw(int); // get bandwidth
 int ticks2ms(ui8, ui32);
 int ms2ticks(ui8, ui32);
};

B.1.2.5 Timer

class Timer
{
 protected:
 int send_now;
 timeval ses_start;
 timeval last_pkt;
 timeval next_pkt;
 timeval time_to_next_pkt;

 public:
 Timer()
 {
 send_now = 0;
 memset(&last_pkt, 0, sizeof(timeval));
 memset(&next_pkt, 0, sizeof(timeval));
 memset(&time_to_next_pkt, 0, sizeof(timeval));
 (void)gettimeofday(&ses_start, 0);
 }
 inline void set_start_time(timeval start)
 {
 ses_start.tv_sec = start.tv_sec,
 ses_start.tv_usec = start.tv_usec;
 }
 inline const timeval &send_time(void) { return(next_pkt); }
 inline const timeval &last_send(void) { return(last_pkt); }
 inline int ready_now(void) { return(send_now); }
 inline int ready_to_send(void)
 {
 if (send_now)

135
 {
 return(1);
 }
 timeval tv;
 (void)gettimeofday(&tv, NULL);
 int late = ((tv.tv_sec > next_pkt.tv_sec)
 || ((tv.tv_sec == next_pkt.tv_sec)
 && (tv.tv_usec >= next_pkt.tv_usec)));
 return(late);
 }
 inline timeval *time_to_next_send(void)
 {
 (void)gettimeofday(&time_to_next_pkt, NULL);
 if (time_to_next_pkt.tv_sec > next_pkt.tv_sec)
 {
 memset(&time_to_next_pkt, 0, sizeof(timeval));
 }
 else
 {
 time_to_next_pkt.tv_sec =
 next_pkt.tv_sec - time_to_next_pkt.tv_sec;
 int diff = next_pkt.tv_usec - time_to_next_pkt.tv_usec;
 if (diff < 0)
 {
 if (time_to_next_pkt.tv_sec)
 {
 --time_to_next_pkt.tv_sec;
 time_to_next_pkt.tv_usec = diff + 1000000;
 }
 else
 {
 memset(&time_to_next_pkt, 0, sizeof(timeval));
 }
 }
 else
 {
 time_to_next_pkt.tv_usec = diff;
 }
 }
 return(&time_to_next_pkt);
 }
 inline void set_send_timer(ui32 ms)
 {
 if (!ms)
 {
 send_now = 1;
 return;
 }

136
 last_pkt.tv_sec =
 next_pkt.tv_sec, last_pkt.tv_usec = next_pkt.tv_usec;
 // Assumes "ms" is interval between session start and
 // current packet
 // Should I worry about overflow in the multiplication
 // or addition?
 int offset = ses_start.tv_usec+ms*1000;
 next_pkt.tv_sec = ses_start.tv_sec + offset/1000000;
 next_pkt.tv_usec = offset % 1000000;
 return;
 }
 inline void send_wait(void)
 {
 timeval tv;
 (void)gettimeofday(&tv, NULL);
 int diff = (next_pkt.tv_sec - tv.tv_sec) * 1000000
 + (next_pkt.tv_usec - tv.tv_usec);
 if (diff > 0)
 {
 tv.tv_sec = diff / 1000000;
 tv.tv_usec = diff % 1000000;
 (void)select(0, NULL, NULL, NULL, &tv);
 }
 return;
 }
};

B.1.2.6 RTPHandler

typedef map <ui32, IPNetAP *, less<ui32> >ipnetapmap;

class RTPHandler
{
 // variables
 private:
 IPAddr mcast_addr;
 ui32 my_ssrc;
 ipnetapmap list;
 map <int, ui32, less<int> > ssrcids;
 int ttl;
 IPNetAP *my_ap;
 int dbg;

 protected:
 IPAddr lastpkt_src; // transport addr of last packet’s source

 protected:

137
 IPNetAP *create_new_ap(void);
 int rm_ap(ui32);
 int add_ap(ui32);
 int add_ap(ui32, IPNetAP *);
 int check_ap(ui32);

 public:
 RTPHandler(IPAddr *);
 inline void set_debug(int d) { dbg = d; }
 void set_ttl(int new_ttl) { ttl = new_ttl; }
 inline int set_mcast_addr(IPAddr *rem_addr)
 {
 mcast_addr = *rem_addr;
 return(0);
 }
 inline ui32 naps() { return(list.size()); }
 inline IPAddr get_pktsrc() { return(lastpkt_src); }
 IPNetAP *get_ap(ui32);
 ui32 get_ssrc(ui32);
 int is_a_source(ui32);
 int is_connected(ui32);
 int connect_to_session(ui32);
 int connect_myself(ui32);
 int disconnect_from_session(ui32);
 int disconnect_from_session(void);
 int get_my_skt(void);
 int pktread(char *, int, IPAddr *);
 int replace_ssrc(ui32, ui32);
};

B.1.2.7 RTPDataHandler

class RTPDataHandler: public RTPHandler, public Timer,
 public RTPFormat
{
 private:
 ui32 dbg;
 timeval wc;
 timeval first;
 ntp64 rcvd;
 ui32 n_diffs;
 ui32 last_ssrc;
 ui32 last_offset;

 private:
 /*
 * NB: because this is called from update_seq() and is

138
 * *not* used as a real "initialization" method, don’t
 * initialize probation to MIN_SEQUENTIAL or you’ll never
 * get a correct base_seq.
 */
 inline void init_seq(RTPSource *s, ui16 seq)
 {
 s->init_seq(seq);
 }
 int update_seq(RTPSource *, ui16);
 int update_jitter(RTPSource *, ui32, ui8);

 public:
 RTPDataHandler(int req_ttl): RTPHandler(NULL), dbg(0)
 {
 reset();
 set_ttl(req_ttl);
 }
 inline void reset(void)
 {
 wc.tv_sec = wc.tv_usec = 0;
 first.tv_sec = first.tv_usec = 0;
 rcvd.upper = rcvd.lower = 0;
 n_diffs = 0;
 IPAddr blank; // zero-fills a new IPAddr
 lastpkt_src = blank; // obliterates old IPAddr
 last_ssrc = 0;
 last_offset = 0;
 }
 inline void debug(ui32 level=1) { dbg = level; }
 inline ntp64 &get_rcvd() { return(rcvd); }
 inline int pktread(char *buf, int bufsz)
 {
 int ret = RTPHandler::pktread(buf, bufsz, &lastpkt_src);
 rcvd = ntp64time();
 return(ret);
 }
 int pktsend(char *, int, RTPSession *);
 RTPSource *get_pkt_source(char *, RTPSession *);
 int parse_pkt(char *, int, RTPSession *);
 int make_pkt(char *, RTPSession *);
};

B.1.2.8 RTPCtrlHandler

// RTCP common header word
typedef struct rtcp_common_t
{

139
 unsigned int version:2; /* protocol version */
 unsigned int p:1; /* padding flag */
 unsigned int count:5; /* varies by packet type */
 unsigned int pt:8; /* RTCP packet type */
 ui16 length; /* pkt len in words, w/o this word */
};

// Reception report block
typedef struct rtcp_rr_t
{
 ui32 ssrc; /* data source being reported */
 unsigned int fraction:8; /* fraction lost since last SR/RR */
 int lost:24; /* cumul. no. pkts lost (signed!) */
 ui32 last_seq; /* extended last seq. no. received */
 ui32 jitter; /* interarrival jitter */
 ui32 lsr; /* last SR packet from this source */
 ui32 dlsr; /* delay since last SR packet */
};

// SDES item
typedef struct rtcp_sdes_item_t
{
 ui8 type; /* type of item (rtcp_sdes_type_t) */
 ui8 length; /* length of item (in octets) */
 char data[1]; /* text, not null-terminated */
};

/* sender report (SR) */
struct rtcp_sr
{
 ui32 ssrc; /* sender generating this report */
 ui32 ntp_sec; /* NTP timestamp */
 ui32 ntp_frac;
 ui32 rtp_ts; /* RTP timestamp */
 ui32 psent; /* packets sent */
 ui32 osent; /* octets sent */
 rtcp_rr_t rr[1]; /* variable-length list */
};

/* reception report (RR) */
struct rtcp_rr
{
 ui32 ssrc; /* receiver generating this report */
 rtcp_rr_t rr[1]; /* variable-length list */
};

/* source description (SDES) */
struct rtcp_sdes

140
{
 ui32 src; /* first SSRC/CSRC */
 rtcp_sdes_item_t item[1]; /* list of SDES items */
};

/* BYE */
struct rtcp_bye
{
 ui32 src[1]; /* list of sources */
};

// One RTCP packet
struct rtcp_t
{
 rtcp_common_t common;
 union rtcp_rpt_type
 {
 struct rtcp_sr sr;
 struct rtcp_rr rr;
 struct rtcp_sdes sdes;
 struct rtcp_bye bye;
 }
 r;
};

typedef struct
{
 char *cname;
 char *name;
 char *email;
 char *phone;
 char *loc;
 char *tool;
 char *note;
}
sdesinfo;

/*
 * The player, for efficiency, should have as much control
 * info as possible available if a source suddenly needs to
 * send data. Ergo, as we parse the saved packet stream, we
 * should build a table--a map, in this case--to correspond
 * each source’s SSRC ID with its original CNAME and NAME,
 * modified to reflect the actual source (the player).
 */
typedef map <ui32, sdesinfo, less<ui32> >sdesinfomap;

const int MRP_RTCP_MAXPKTSIZE = 1024; // 1024 is a guess

141
class RTPCtrlHandler: public RTPHandler, public Timer,
 public RTPFormat
{
 friend class RTPComm;

 private:
 int errcode;
 ui32 dbg;
 int avg_rtcp_size;
 sdesinfo si;
 sdesinfomap sdes_map;
 ui16 sdes_item_flag;
 timeval last_sr_wc;
 float last_ticks_per_ms;
 ui32 n_ticks;
 ui32 n_srs;
 ui32 avg_ticks_per_rpt;
 char packet[MRP_RTCP_MAXPKTSIZE];

 private:
 void rtcp_sr_ntoh(rtcp_sr *);
 void rtcp_sr_hton(rtcp_sr *p);
 void rtcp_rr_t_ntoh(rtcp_rr_t *);
 void rtcp_rr_t_hton(rtcp_rr_t *);
 void rtcp_rr_ntoh(rtcp_rr *, int);
 void rtcp_rr_hton(rtcp_rr *, int);
 void rtcp_sdes_ntoh(rtcp_sdes *);
 void rtcp_sdes_hton(rtcp_sdes *);
 void rtcp_bye_ntoh(rtcp_bye *, int);
 void rtcp_bye_hton(rtcp_bye *, int);
 int validate_hdr(rtcp_t *, ui32);
 char *make_userhost_str(char *);
 int fill_sdesinfo(const char *, const char *);
 int parse_defaults_entry(char *);
 int change_cname(char *);
 int change_name(char *);
 int passwd2sdesinfo(passwd *, const char *, const char *);
 void set_rtcp_interval(int members, int senders,
 double rtcp_bw, int we_sent,
 int packet_size, int initial=0);
 // Packet reading routines
 int parse_sr(rtcp_t *, RTPSession *, const IPAddr *);
 int parse_rr(rtcp_t *, RTPSession *, const IPAddr *);
 int parse_sdes(rtcp_t *, RTPSession *, const IPAddr *);
 int parse_bye(rtcp_t *, RTPSession *);
 // Packet creation routines
 inline ui32 calc_dlsr(void);

142
 void make_sr(RTPSource *src, rtcp_t *);
 void make_rr_int(RTPSource *, rtcp_rr_t *);
 void make_fixed_rr_hdr(RTPSource *, rtcp_t *);
 void choose_sdes_items(rtcp_sdes_type_t[], char *[], int[],
 int *, sdesinfo *);
 int make_sdes_int(char *, ui32, int, rtcp_sdes_type_t[],
 char *[], int[]);
 int make_sdes(char *, int, ui32);
 int make_bye(RTPSession *, ui32);

 public:
 RTPCtrlHandler(char *, int);
 inline void debug(ui32 level=1) { dbg = level; }
 void print_stats(RTPSource *s);
 void print_stats(RTPSession *ses);
 void errmsg(char *);
 inline ui32 nsrcs() { return(sdes_map.size()); }
 void update_rtp2ntp(rtcp_sr *, RTPSource *);
 int parse_pkt(char *, ui32, RTPSession *);
 int send_rpt(RTPSession *, RTPSource *);
 int parse_saved_pkt(char *, ui32, RTPSession *);
 int add_sdes(ui32);
 sdesinfo *get_sdes(ui32);
 int update_sdes(rtcp_t *, int, RTPSource *);
 inline int pktread(char *buf, int bufsz)
 {
 return(RTPHandler::pktread(buf, bufsz, &lastpkt_src));
 }
 int send_bye(RTPSession *);
 int send_bye(RTPSession *, ui32);
};

B.1.2.9 RTPComm

class RTPComm: public RTPSession
{
 // variables
 private:
 int commdebug;
 int status; // connected or not connected
 RTPSource *me;
 RTPDataHandler *dh;
 RTPCtrlHandler *ch;
 ui32 good_datapkts;
 ui32 bad_datapkts;
 ui32 good_ctrlpkts;
 ui32 bad_ctrlpkts;

143
 timeval ses_start;
 int rtcp_send_index; /* for player; the current
 player-source that should send
 the RTCP packet */

 // methods
 protected:
 int mconn_establish(RTPHandler *, IPAddr *);
 void stamp_pkt(char *, int, RTPPktType);

 public:
 inline void set_debug(int d) { commdebug = d; }
 inline void set_full_debug(int d)
 {
 commdebug = d;
 RTPSession::debug(d);
 dh->debug(d);
 }
 RTPComm(char *, int req_ttl=DMRP_DEFAULT_TTL, ui32 req_bw=0);
 inline ~RTPComm(void)
 {
 closecomm();
 }
 inline ui32 ngood(void) { return(good_datapkts); }
 inline ui32 nbad(void) { return(bad_datapkts); }
 inline ui32 ngoodctrl(void) { return(good_ctrlpkts); }
 inline ui32 nbadctrl(void) { return(bad_ctrlpkts); }
 inline int set_name(char *name)
 {
 return(ch->change_name(name));
 }
 inline int set_cname(char *cname)
 {
 return(ch->change_cname(cname));
 }
 inline void set_start_time(void)
 {
 (void)gettimeofday(&ses_start, 0);
 }
 inline void set_start_time(timeval tv)
 {
 memcpy(&ses_start, &tv, sizeof(timeval));
 ch->set_start_time(tv);
 dh->set_start_time(tv);
 }
 inline timeval get_start_time(void) { return(ses_start); }
 inline int get_data_skt(void) { return(dh->get_my_skt()); }
 inline int get_ctrl_skt(void) { return(ch->get_my_skt()); }

144
 void closecomm(void);
 void create_my_source(int);
 int join(IPAddr *, IPAddr*);
 int join(IPAddr *);
 int join(char *addr, ui16 port);
 int register_addr(char *, ui16);
 int read_data(char *, ui32);
 int read_ctrl(char *, ui32);
 void wait_until(ui32 offset);
 inline int ctrl_ready(void) { return(ch->ready_to_send()); }
 inline int data_ready(void) { return(dh->ready_to_send()); }
 // XXX This is OK for the listener, not for the player
 void send_ctrl(int which=-1);
 inline timeval *time_to_next_ctrl(void)
 {
 return(ch->time_to_next_send());
 }
 inline int pkt_type(char *buf)
 {
 PktInfo *pi_p = (PktInfo *)buf;
 return(pi_p->type);
 }
 inline ui32 pkt_size(char *buf)
 {
 PktInfo *pi_p = (PktInfo *)buf;
 return(pi_p->size);
 }
 inline char *skip_pkt(char *buf)
 {
 PktInfo *pi_p = (PktInfo *)buf;
 // Make sure to keep the buffer pointer 32-bit aligned
 return(buf+DMRP_PKTLENSZ+ceil32(pi_p->size));
 }
 void print_pkt(char *buf);
 int make_pkt(char *buf);
 inline int send_data_pkt(char *buf, int bufsz)
 {
 return(dh->pktsend(buf, bufsz, this));
 }
 int send_next(PktInfo *, char *);
 void wait_send_next(void);
 inline void reset(void)
 {
 dh->reset();
 set_start_time();
 // XXX Need a way to flush the RTPSession/RTPSourceList
 }
};

145
B.1.3 DPSS I/O Classes

B.1.3.1 DPSSState

class DPSSState
{
 // variables
 public:
 int set_id;
 int nsrvrs;
 int connected; // don’t reconnect if != 0
 IssHandle *ih_p;
 dsmSession ds_p;
 dsmSetInfo dsi_p; // For request_blocks()
 RequestList *rl_p;
 IssInfo *ii_p;
 BlockMap *bm_p;

 // methods
 public:
 DPSSState();
 ~DPSSState();
};

B.1.3.2 StorageIOBase

class StorageIOBase
{
 public:
 virtual int open(char *) = 0;
 virtual int close(void) = 0;
 virtual int read(char *, ui32) = 0;
 virtual int write(char *, ui32) = 0;
 virtual int seek(int, int) = 0; // seek(offset, whence)
};

B.1.3.3 DPSSPOC

/*
 * DPSS logical block name.
 *
 * Note that only the "x" field is used now. Using all 128 bytes
 * efficiently doesn’t seem to be terribly important right now.
 */
typedef lu_key DPSS_lbn;

146
class DPSSPOC: public StorageIOBase
{
 // Variables
 private:
 int debug;
 // write-specific vars
 ui32 nblocks_wr; // number of blocks written
 DPSS_lbn cur_block_wr; // block being written; DPSSCommon.h
 ui32 alloc_bytes;
 ui32 alloc_blocks;
 // read-specific vars
 ui32 file_sz_bl; // number of blocks in a loaded set
 ui32 block_sz; // block size, as stored on DSM
 DPSS_lbn cur_block_rd; // block being read; DPSSCommon.h
 // general vars
 DPSSState *ds_set;
 char *dpss_host;
 char *dsm_host;
 char *storage_servs;
 int *srvrlist;

 // Methods
 private:
 char **buildStringList(char *);
 int getDsmSetInfo(int set_id, dsmSetInfo *);
 int send_block(char *, ui32);
 int clean_up_load(void);

 public:
 DPSSPOC(char *dsm=NULL, char *dpss=NULL, int dbg=0);
 ~DPSSPOC();
 inline void set_debug(int d) { debug = d; }
 inline int get_debug(void) { return(debug); }
 int open(char *);
 int close(void);
 int open_dpss(char *host=NULL);
 int get_scribe_addrs(char *);
 int register_set(char *, ui32);
 int reserve_space(DPSSState *);
 int prep_new_set(char *, ui32);
 int open_dpss_w(char *, ui32);
 int connect_scribe(int);
 int connect_dpss_scribes(void);
 int open_dpss_r(char *);
 int open_dpss_r(int);
 int close_dpss(void);
 int write(char *data, ui32 nbytes);
 inline int write_dpss(char *data, ui32 nbytes)

147
 {
 return(DPSSPOC::send_block(data, nbytes));
 }
 int read(char *, ui32);
 int request_blocks(ui32);
 int receive_blocks(char *, ui32, ui32 *);
 int read_dpss(char *, ui32, ui32 *);
 int seek(int, int); // seek(offset, whence)
 int seek_dpss(int, int);
 inline int out_of_space(void)
 {
 return(nblocks_wr >= alloc_blocks);
 }
 inline int get_set_id(void) { return(ds_set->set_id); }
 inline int get_num_blocks(void) { return(file_sz_bl); }
};

B.1.4 SessionManager

// Make sure DMRP_DPSS_BLOCKSZ is always an even mod of 1024...
const int DMRP_DPSS_BLOCKSZ = 65536; // bytes
const int DMRP_BUFSZ = 2 * DMRP_DPSS_BLOCKSZ;

/*
 * For recording: don’t wait for data packets; for playback:
 * show all original conference members, whether or not they
 * send data (playback not yet implemented)
 */
const ui32 SM_ALL_PKTS = 0x8;

struct DMRPSessionInfo
{
 char *addr;
 ui16 port;
 int ttl;
 int set_id;
 char *filename;
 ui32 filesz;
 ui32 bandwidth;
 /*
 * For recording; currently seconds. 1 day == 86400 s;
 * 7 days == 604800 s; 30 days == 2592000 s, so an int
 * should be enough space for now. An int also allows
 * negative values if needed, unlike a ui32.
 */
 int duration;
 char *imglib_name;

148
};

class SessionManager
{
 // variables
 private:
 timeval quit_time; /* time at which program should
 end; set if DMRPSessionInfo’s
 "duration" field is non-zero */

 public:
 int debug;
 int flags;
 AppStatus as;
 RTPComm *comm;
 DPSSPOC *dpss_poc;
 DMRPSessionInfo si;
 char databuf[DMRP_BUFSZ];
 int dloc;
 char *toolname;
 char *dpss_host;
 char *dsm_host;
 char *dpss_servs;
 int nblocks;

 // methods
 private:
 int create_comm(void);

 public:
 SessionManager(char *tool, DMRPSessionInfo *si_p, int dbg=0);
 int join_session(void);
 inline void leave_session(void) { comm->closecomm(); }
 int open_dpss(char *file, char *dpss, char *dsm, ui32 sz=0,
 char *servs=NULL); /* if defaults used,
 assume playback */
 int open_dpss(int setid, char *dpss, char *dsm, ui32 sz=0,
 char *servs=NULL); /* if defaults used,
 assume playback */
 int close_dpss(void);
 void set_bandwidth(int bw) { si.bandwidth = bw; }
 void set_ttl(int req_ttl) { si.ttl = req_ttl; }
 int set_toolname(char *tn)
 {
 if (tn && (toolname = strdup(tn)) == NULL)
 {
 return(-1);
 }

149
 return(0);
 }
 int set_sktmask(fd_set *sktmask)
 {
 FD_ZERO(sktmask);
 FD_SET(comm->get_data_skt(), sktmask);
 FD_SET(comm->get_ctrl_skt(), sktmask);
 return((comm->get_data_skt() < comm->get_ctrl_skt())
 ? comm->get_ctrl_skt()+1
 : comm->get_data_skt()+1);
 }
 int process_data_pkt(char *, int);
 int process_ctrl_pkt(char *, int);
 int save_block(int *, int *, int *);
 int mcast_receive(void);
 // For invocation via pthread_create()
 inline void *mcast_receive_thr(void)
 {
 return((void *)mcast_receive());
 }
 int prepare_data_pkt(char *);
 int register_session(void);
 int mcast_send(void);
 // For invocation via pthread_create()
 inline void *mcast_send_thr(void)
 {
 return((void *)mcast_send());
 }
 inline int get_nblocks(void) { return(nblocks); }
 inline void quit(void) { as.done(); }
 /* Recording: don’t wait for data packets to arrive
 to begin saving packets */
 inline void save_from_start(void)
 {
 flags |= SM_ALL_PKTS;
 }
 /*
 * Playback: send RTCP packets for all original
 * session members, even if they didn’t send any data
 */
 inline void show_all_members(void)
 {
 flags |= SM_ALL_PKTS;
 }
 inline void reset(void)
 {
 comm->reset();
 as.remove(APPSTAT_DONE); // See AppStatus

150
 }
};

B.1.5 AppStatus

/*
 * Possible values for "status" field in AppStatus; could
 * be extended to allow values like APPSTAT_PLAY,
 * APPSTAT_REC, APPSTAT_FF, APPSTAT_REW, etc.
 */
const ui32 APPSTAT_DONE = 0x1;

class AppStatus
{
 // variables
 private:
 pthread_mutex_t mtx;
 ui32 status; // bitmask

 // methods
 protected:
 void lock(void);
 void unlock(void);

 public:
 AppStatus(int s=0);
 ~AppStatus(void);
 ui32 get(void);
 void set(ui32); // overwrites "status" with arg
 void add(ui32); // adds flags to "status"
 void remove(ui32); // removes flags from "status"
 ui32 doneq(void); // return 1 if done, 0 otherwise
 void done(void); // set "done" flag
 void clear(void); // reset
};

B.2 DMRP common functions

The following are routines that both the recorder and player use that lie

outside of any of the shared classes. In general, these routines are used for

parsing the conference configuration file discussed in Section IV.3 or for

managing the mutex locks required for inter-thread synchronization.

151
/**/
passwd *
mrp_getpwinfo(void)
{
 passwd *pwd = getpwuid(getuid());
 if (pwd == NULL)
 {
 return(NULL);
 }
 void (*oldnh)() = set_new_handler(&DMRP_new_handler);
 passwd *new_pwd = new passwd;
 set_new_handler(oldnh); // reinstall default new() handler
 memcpy(new_pwd, pwd, sizeof(passwd));
 return(new_pwd);
}
/* end mrp_getpwinfo(void) */

/**/
// From iss_utils/iss_comm_utils.c
char *
mrp_host2ip(char *hostname)
{
 char *ip;
 struct hostent *hp;

 if ((hp = gethostbyname(hostname)) != NULL)
 {

if ((ip = inet_ntoa(*(struct in_addr *)(hp->h_addr_list[0])))
!= NULL)

 {
 if ((ip = strdup(ip)) != NULL)
 {
 return(ip);
 }
 }
 }
 return(NULL);
}
/* end mrp_host2ip */

/**/
char *
strip_token(char *str, char fs)
{
 if (!str)
 return(NULL);

152
 char *tmp = strchr(str, fs);
 if (tmp != NULL)
 {
 *tmp = '\0';
 ++tmp;
 }
 return(tmp);
}
// end strip_token(char *, char)

/**/
char *
skip_token(char *str, char fs)
{
 if (!str)
 return(NULL);
 char *tmp = strchr(str, fs);
 if (tmp != NULL)
 {
 ++tmp;
 }
 return(tmp);
}
// end skip_token(char *, char)

/**/
void
replace_whitespace(char *str, char rch)
{
 if (!str)
 return;
 for (int i = 0; i < strlen(str); ++i)
 {
 if (isspace(str[i]))
 str[i] = rch;
 }
 return;
}
// end replace_whitespace(char *, char)

/**/
int
get_addr_info(char *str, char **addr, u_short *port)
{
 char *func = "get_addr_info()",

153
 *ptr;

 // Assume "str" is of standard form "ADDR/PORT"
 if ((ptr = strchr(str, '/')) == NULL)
 {
 cerr << func << ": invalid multicast address \"" << str <<

"\"?\n"
 << flush;
 return(-1);
 }
 ptr[0] = '\0';
 ++ptr;
 if ((*addr = strdup(str)) == NULL)
 {
 cerr << "strdup() failure\n" << flush;
 return(-1);
 }
 // XXX Consider a weak check for port using isdigit() on first

character
 *port = atoi(ptr);
 ptr[-1] = '/';
 return(0);
}
// end get_addr_info(char *, char **, u_short *)

/**/
int
read_conference_file(char *conffile, DMRPSessionInfo **sinfo)
{
 char *func = "read_conference_file()";

 *sinfo = NULL;
 FILE *fp = fopen(conffile, "r");
 if (fp == NULL)
 {
 cerr << "Couldn't open " << conffile << endl;
 return(-1);
 }
 char buffer[CONFLINELEN],
 *tok1,
 *tok2,
 *tok3,
 *bufptr,
 *sesname = NULL,
 *imglib_name = NULL;
 int medianum,
 num_media = 0,

154
 lineno,
 duration = 0; /* 0 implies recorder should run
 forever; no effect on player,
 at present */

 /*
 * The parsing is pretty primitive, and will break
 * if the input is not newline-terminated.
 */
 for (lineno = 1; fgets(buffer, CONFLINELEN, fp); ++lineno)
 {
 // Strip out the newline.
 char *nl = strrchr(buffer, '\n');
 if (!nl)
 {
 cerr << func << ": line " << lineno << " not

newline-terminated "
 "\n\tor is > " << CONFLINELEN << " characters\n";
 return(-1);
 }
 *nl = '\0';
 if ((bufptr = strip_token(buffer, '=')) == NULL)
 {
 continue; // unrecognized line, discarded
 }
 tok1 = buffer;
 if (!strcmp(tok1, "session_name"))
 {
 replace_whitespace(bufptr, '_'); // underscore

replaces whitespace
 if ((sesname = strdup(bufptr)) == NULL)
 {
 cerr << func << ": strdup() for session name

failed\n";
 (void)fclose(fp);
 return(-1);
 }
 }
 else if (!strcmp(tok1, "session_duration"))
 {
 // session_duration in minutes, but duration in seconds
 duration = atoi(bufptr) * 60;
 if (!duration)
 {
 cerr << func << ": invalid value \"" << bufptr
 << "\" for session duration\n";
 (void)fclose(fp);
 return(-1);

155
 }
 }
 else if (!strcmp(tok1, "imglib_name"))
 {
 replace_whitespace(bufptr, '_'); // underscore

replaces whitespace
 if ((imglib_name = strdup(bufptr)) == NULL)
 {
 cerr << func << ": strdup() for ImgLib name

failed\n";
 (void)fclose(fp);
 return(-1);
 }
 }
 else if (isdigit(tok1[0])) // begin media-specific

handling
 {
 // Media numbers start w/ 1, so make sure to adjust
 if ((medianum = (atoi(tok1)-1)) >= num_media)
 {
 DMRPSessionInfo *tmp;
 tmp = (DMRPSessionInfo *)realloc((*sinfo),
 (medianum+1)*sizeof(DMRPSessionInfo));
 if (tmp == NULL)
 {
 cerr << func << ": Couldn't create or extend

DMRPSessionInfo "
 "array\n";
 (void)fclose(fp);
 return(-1);
 }
 *sinfo = tmp;
 for (int index = num_media; index < medianum+1;

++index)
 {
 // initialize to impossible value
 (*sinfo)[index].set_id = -1;
 }
 num_media = medianum+1;
 }
 tok2 = bufptr;
 if ((tok3 = strip_token(bufptr, '=')) == NULL)
 {
 // malformed media line
 cerr << "Skipping malformed media line: \"" << tok1

<< "="
 << bufptr << "\"\n";
 continue;

156
 }
 if (!strcmp(tok2, "media_port"))
 {
 (*sinfo)[medianum].port = atoi(tok3);
 }
 else if (!strcmp(tok2, "media_ip"))
 {
 if (((*sinfo)[medianum].addr = strdup(tok3)) == NULL)
 {

cerr << func << ": strdup() for multicast address
failed\n";

 (void)fclose(fp);
 return(-1);
 }
 }
 else if (!strcmp(tok2, "media_name"))
 {
 if (sesname)
 {
 (*sinfo)[medianum].filename
 = (char *)calloc(strlen(sesname)
 +strlen(tok3)
 +strlen(tok1)+3,
 sizeof(char));
 }
 else
 {
 (*sinfo)[medianum].filename
 = (char *)calloc(strlen("<UNKNOWN>")
 +strlen(tok3)
 +strlen(tok1)+3,
 sizeof(char));
 }
 if ((*sinfo)[medianum].filename == NULL)
 {

cerr << func << ": couldn't create media filename
for "

 << tok3 << ", " << tok1 << endl;
 (void)fclose(fp);
 return(-1);
 }
 if (sesname)
 {
 strcpy((*sinfo)[medianum].filename, sesname);
 }
 else
 {
 strcpy((*sinfo)[medianum].filename, "<UNKNOWN>");

157
 }
 strcat((*sinfo)[medianum].filename, "_");
 strcat((*sinfo)[medianum].filename, tok3);
 strcat((*sinfo)[medianum].filename, "_");
 strcat((*sinfo)[medianum].filename, tok1);
 }
 else if (!strcmp(tok2, "media_setid"))
 {
 (*sinfo)[medianum].set_id = atoi(tok3);
 }
 else if (!strcmp(tok2, "media_type") && strcmp(tok3,

"1"))
 {
 cerr << func << ": can't handle media type " << tok3

<< endl;
 (void)fclose(fp);
 return(-1); /* XXX Throw out sinfo[] entry and

continue
 instead? */
 }
 else if (!strcmp(tok2, "media_ttl"))
 {
 (*sinfo)[medianum].ttl = atoi(tok3);
 }
 } // end media-specific handling
 } // end for()
 // Fill in session params applying to all media
 for (int i = 0; i < num_media; ++i)
 {
 (*sinfo)[i].duration = duration;
 /*
 * Copy ImgLib name into each DMRPSessionInfo; for now,
 * the name will not be unique per medium, but only per
 * conference (i.e., group of related sessions)
 */
 if (imglib_name)
 {
 (*sinfo)[i].imglib_name = strdup(imglib_name);
 if ((*sinfo)[i].imglib_name == NULL)
 {
 cerr << func << ": Couldn't copy ImgLib name\n" <<

flush;
 (void)fclose(fp);
 return(-1);
 }
 }
 }
 if (!feof(fp))

158
 {
 perror("Error reading session config file");
 return(-1);
 }
 if (fclose(fp))
 cerr << func << ": error closing file (but continuing

anyway)\n";
 if (sesname)
 free(sesname);
 return(num_media);
}
// end read_conference_file(char *, DMRPSessionInfo **)

/**/
void
mrp_lock_mutex(pthread_mutex_t *mtx_p)
{
 char *func = "mrp_lock_mutex(pthread_mutex_t *)";

 int ret = pthread_mutex_lock(mtx_p);
 if (ret)
 {
 cerr << func << ": ";
 throw DMRPExc(DMRPEXC_MTX_LOCK, ret);
 }
 return;
}
// end mrp_lock_mutex(pthread_mutex_t *)

/**/
void
mrp_unlock_mutex(pthread_mutex_t *mtx_p)
{
 char *func = "mrp_unlock_mutex(pthread_mutex_t *)";

 int ret = pthread_mutex_unlock(mtx_p);
 if (ret)
 {
 cerr << func << ": ";
 throw DMRPExc(DMRPEXC_MTX_UNLOCK, ret);
 }
 return;
}
// end mrp_unlock_mutex(pthread_mutex_t *)

159
B.3 Recorder

The listener consists of two main code files, listener.cc and listener_utils.cc.

listener.cc contains the bulk of the recorder’s code, including main();

listener_utils.cc contains "utility" routines that parse command-line arguments

and print the program’s usage message.

The recorder was originally called the listener, hence the naming conventions

for the files, data types, and some variables.

B.3.1 Common definitions

const ui32 LSNR_DEFAULT_FILESZ = 1073741824; // bytes (== 1 GB)
/*
 * Possible flag values. For compatibility with
 * SessionManager, keep listener-only flags in high-order
 * byte of flags variable. SM_* defined in SessionManager.h.
 */
const ui16 LSNR_NOSAVE_DBG = SM_NOSAVE_DBG;
const ui16 LSNR_QUIET = SM_QUIET;
const ui16 LSNR_ALL_PKTS = SM_ALL_PKTS;
const ui16 LSNR_HIDE_NAME = 0x200; // hide caller’s RTPName

const
struct ListenerArgs
{
 int my_id;
 char *dpss_host;
 char *dsm_host;
 char *dpss_servs;
 ui16 debug;
 ui16 flags;
 int ttl;
 int bandwidth;
 int filesz; // use as size of EACH session file
 int duration; // in seconds, for recording
 char *imglib_prog; /* ImgLib script/program to
 register set size, ID */
 char *imglib_name; /* ImgLib "name" of this

160
 collection of sessions */
 char *sesfile;
 int nsessions;
 DMRPSessionInfo *sessions;
};

B.3.2 listener.cc

// Globals, required because of signal-handling semantics:
char *pname; // required for DPSS
int nsessions = 0;
SessionManager **smgrs;
int lsnr_debug;
// Needed as long as LSNR_NOSAVE_DBG is around
int lsnr_nosave;
ui16 quiet = 0;
ui16 hide_caller_name = 0; // by default, use caller's RTPName
sigset_t lsnr_sigmask;
pthread_t *thread_ids = NULL,
 timer_tid;

/**/
int
main(int argc, char **argv)
{
 ListenerArgs la;
 TimerArgs ta;
 char imglib_cmd[512],
 setidstr[10],
 nbytesstr[20];

 if (init(argc, argv, &la) < 0)
 {
 cerr << "Fatal initialization error" << endl;
 exit(-1);
 }
 if ((nsessions = join_sessions(smgrs, la.nsessions))
 != la.nsessions)
 {
 // currently should be fatal because it's easier
 cerr << "Couldn't join all sessions--fatal error\n";
 cleanup(-1);
 }
 if (start_session_threads(smgrs, &thread_ids, nsessions) < 0)
 {
 // currently should be fatal because it's easier
 cerr << "Couldn't start threads--fatal error\n";

161
 cleanup(-1);
 }
 /*
 * If we requested a session timeout, it applies to every
 * session; ergo, we set up a separate thread which will
 * do nothing but set an alarm which will be caught by
 * the main thread.
 */
 if (la.sessions[0].duration)
 {
 ta.ns = la.sessions[0].duration;
 int r = pthread_create(&timer_tid, NULL, timer,
 (void *)&ta);
 if (r)
 {
 cerr << "Error creating timer thread\n" << flush;
 cleanup(-1);
 }
 }
 int signo, ret;
 if ((ret = sigwait(&lsnr_sigmask, &signo)) < 0)
 {
 cerr << strerror(ret) << endl << flush;
 exit(-2);
 }
 int nbytes = -1,
 setid = -1;
 if (signo == SIGINT || signo == SIGALRM) // all is well
 {
 if (signo == SIGALRM)
 {
 cout << "Conference timeout reached\n" << flush;
 }
 I_am_done();
 if (la.imglib_prog)
 {
 // Initialize ImgLib buffer
 memset(imglib_cmd, 0, 256);
 sprintf(imglib_cmd, "%s \"%s\" ", la.imglib_prog,
 smgrs[0]->si.imglib_name);
 }
 // Wait for child threads
 for (int i=0; i < nsessions; ++i)
 {
 // debugging
 cout << "Joining thread " << i << "...\n" << flush;
 if (ret = pthread_join(thread_ids[i], NULL))
 {

162
 cerr << "pthread_join(): " << strerror(ret)
 << endl << flush;
 exit(-3);
 }
 close_session(smgrs[i]);
 // For ImgLib/WALDO
 if (!lsnr_nosave)
 {
 if (la.imglib_prog)
 {
 setid = smgrs[i]->dpss_poc->get_set_id();
 nbytes = smgrs[i]->dpss_poc->get_num_blocks()
 * DMRP_DPSS_BLOCKSZ;
 if (!nbytes)
 {
 nbytes = -1;
 setid = -1;
 }
 // print the set ID & # of bytes to a buffer
 memset(setidstr, 0, 10);
 memset(nbytesstr, 0, 20);
 sprintf(setidstr, "%d ", setid);
 sprintf(nbytesstr, "%d ", nbytes);
 strcat(imglib_cmd, setidstr);
 strcat(imglib_cmd, nbytesstr);
 }
 }
 cout << flush;
 }
 // Execute the ImgLib script if one is provided
 if (la.imglib_prog)
 {
 /*
 * Note that system(3s) is *unsafe* to call in
 * a multithreaded environment, so it must not
 * be called at a point where multiple threads
 * are active.
 */
 if (system(imglib_cmd) < 0)
 {
 perror("system()");
 cerr << "Failed ImgLib script and args:\n\t"
 << imglib_cmd << endl << flush;
 }
 }
 exit(0);
 }
 else

163
 {
 cerr << "Received signal " << signo
 << "; abnormal exit...\n" << flush;
 I_am_done();
 for (int i=0; i < nsessions; ++i)
 {
 (void)pthread_join(thread_ids[i], NULL);
 }
 exit(signo);
 } // end if (signo == SIGINT)/else
 return(0);
}
/* end main */

/**/
/*
 * v 0.1: single session, single member
 * v 0.2: single session, multiple members
 * v 0.3: multiple sessions, multiple members
 */
char *
make_toolname(void)
{
 char *basetoolname = "DMRP listener";
 char *vers = ", v. 0.3";

 char *toolname = new char[strlen(basetoolname)+strlen(vers)+1];
 strcpy(toolname, basetoolname);
 strcat(toolname, vers);
 return(toolname);
}
/* end make_toolname(void) */

/**/
int
init(int ac, char **av, ListenerArgs *la_p)
{
 pname = av[0]; // program name
 // increase file descriptor and stack size limits
 rlimit rl;
 memset(&rl, 0, sizeof(rlimit));
 if (getrlimit(RLIMIT_STACK, &rl) < 0)
 {
 perror("getrlimit()");
 exit(-1);
 }

164
 if (setrlimit(RLIMIT_STACK, (const rlimit *)&rl) < 0)
 {
 perror("getrlimit()");
 exit(-1);
 }
 memset(&rl, 0, sizeof(rlimit));
 if (getrlimit(RLIMIT_NOFILE, &rl) < 0)
 {
 perror("getrlimit()");
 exit(-1);
 }
 rl.rlim_cur = rl.rlim_max;
 if (setrlimit(RLIMIT_NOFILE, (const rlimit *)&rl) < 0)
 {
 perror("getrlimit()");
 exit(-1);
 }
 set_sigs2block(&lsnr_sigmask);
 int ret = pthread_sigmask(SIG_BLOCK, &lsnr_sigmask, NULL);
 if (ret)
 {
 cerr << "pthread_sigmask() error: " << strerror(ret) << endl;
 cleanup(-1);
 }
 init_ListenerArgs(la_p);
 parse_args(ac, av, la_p); // listener_utils.cc
 // Next three statements are for the signal handler
 lsnr_debug = la_p->debug;
 quiet = (la_p->flags & LSNR_QUIET);
 hide_caller_name = (la_p->flags & LSNR_HIDE_NAME);
 // hack while LSNR_NOSAVE_DBG is defined
 lsnr_nosave = (la_p->flags & LSNR_NOSAVE_DBG);
 char *toolname = make_toolname();
 smgrs = (SessionManager **)calloc(la_p->nsessions,
 (int)sizeof(SessionManager *));
 if (smgrs == NULL)
 {
 cerr << "Couldn't create SessionManager array\n";
 return(-1);
 }
 for (int i=0; i < la_p->nsessions; ++i)
 {
 try
 {
 smgrs[i] = new SessionManager(toolname,
 &la_p->sessions[i],
 (int)la_p->debug);
 }

165
 catch (SessionMgrExc e)
 {
 e.print();
 return(-1);
 }
 /*
 * XXX A hack to make sure functionality ripped
 * out of here and dumped into the SessionManager
 * can print or suppress printing in the same way
 */
 smgrs[i]->flags = la_p->flags;
 // DPSS-related initialization
 /* if using DPSS, file size should be a multiple of
 DPSS block size */
 if (!la_p->sessions[i].filesz)
 {
 // 16,384 DPSS blocks of 64 KB
 la_p->sessions[i].filesz = LSNR_DEFAULT_FILESZ;
 }
 else // LSNR_BUFSZ assumed to be same as DMRP_BUFSZ
 {
 if (la_p->debug)
 cout << "size " << la_p->sessions[i].filesz
 << ", LSNR_BUFSZ " << LSNR_BUFSZ << endl;
 int x = issRoundUp(la_p->sessions[i].filesz, LSNR_BUFSZ);
 if (la_p->debug)
 cout << x << " blocks\n" << (x * LSNR_BUFSZ) << "

bytes\n";
 smgrs[i]->si.filesz = x * LSNR_BUFSZ;
 }
 if (!(la_p->flags & LSNR_NOSAVE_DBG))
 {
 // debugging
 cout << "Opening DPSS...\n" << flush;
 if (smgrs[i]->open_dpss(la_p->sessions[i].filename,
 la_p->dpss_host, la_p->dsm_host,
 la_p->sessions[i].filesz,
 la_p->dpss_servs) < 0)
 {
 cerr << "Error creating DPSSPOC " << i << endl;
 return(-1);
 }
 }
 } // end for()
 return(0);
}
/* end init(int, char **, ListenerArgs *, RTPSession *) */

166
/**/
/*
 * Required because Solaris native compiler will not allow
 * pthread_create() to call SessionManager::mcast_receive_thr()
 * directly for some reason.
 */
void *
run_session(void *targs)
{
 SessionManager *sm_p = (SessionManager *)targs;
 return(sm_p->mcast_receive_thr());
}
// end run_session(void *)

/**/
int
start_session_threads(SessionManager **smarray,
 pthread_t **tids_pp, int ns)
{
 char *func = "start_session_threads(SessionManager **, pthread_t

**, int)";
 pthread_attr_t tattr;
 int err;

 if (err = pthread_attr_init(&tattr))
 {
 cerr << func << ": pthread_attr_init() error ("
 << strerror(err) << ")\n" << flush;
 return(-1);
 }
 if (err = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM))
 {
 cerr << func << ": pthread_attr_setscope() error ("
 << strerror(err) << ")\n" << flush;
 return(-1);
 }
 *tids_pp = (pthread_t *)calloc(ns, (int)sizeof(pthread_t));
 if (*tids_pp == NULL)
 {

cerr << "Error creating thread ID array; out of memory?\n" <<
flush;

 return(-1);
 }
#ifdef SOLARIS
 thr_setconcurrency(ns+1); // +1 for signal-watching thread
#endif

167
 for (int i=0; i < ns; ++i)
 {
 int r = pthread_create((*tids_pp)+i, &tattr,
 run_session, smarray[i]);
 if (r)
 {

cerr << "Error creating thread for session " << i << endl
<< flush;

 // continue?
 return(-1);
 }
 }
 return(0);
}
// end start_session_threads(SessionManager **, pthread_t **, int)

/**/
void
#ifdef OS_SOLARIS_2_4
cleanup(int)
#else
cleanup(...)
#endif
{
 for (int i=0; i < nsessions; ++i)
 {
 close_session(smgrs[i]);
 }
 exit(0);
}
/* end cleanup */

/**/
void
set_sig_handlers(void)
{
 struct sigaction action;

 memset(&action, 0, (int)sizeof(action));
#ifdef SOL2_5_SIGNALS
 action.sa_handler = cleanup;
#else
 action.sa_handler = (void(*)())cleanup;
#endif
 if (sigaction(SIGINT, &action, NULL) == -1)
 {

168
 perror("sigaction");
 cerr << "Unable to set SIGINT handler\n";
 exit(-1);
 }
 return;
}
/* end set_sig_handlers(void) */

/**/
int
join_sessions(SessionManager **sessions, int ns)
{
 char *func = "join_sessions()";
 int nsuccessful = 0;

 struct timeval tv;
 (void)gettimeofday(&tv, NULL);

 for (int i = 0; i < ns; ++i)
 {
 // address and port initialized by memcpy() in init()
 if (sessions[i]->join_session() < 0)
 {
 cerr << "Couldn't join session at address "
 << sessions[i]->si.addr << "/"
 << sessions[i]->si.port << endl;
 break;
 }
 else
 {
 // Make sure all sessions have same start time
 sessions[i]->comm->set_start_time(tv);
 /*
 * If the program's caller wants to hide
 * his/her name, go along with it
 */
 if (hide_caller_name)
 sessions[i]->comm->set_name("DMRP recorder");
 ++nsuccessful;
 }
 }
 return(nsuccessful);
}
// end join_sessions(SessionManager **, int)

/**/

169
/*
 * NB: Solaris man page suggests you can't make a single call
 * to sigaddset() with a mask of the requested signals, but
 * rather must make a separate call for each signal blocked.
 */
void
set_sigs2block(sigset_t *sigs2block)
{
 if (sigemptyset(sigs2block) < 0)
 {
 perror("sigemptyset()");
 cleanup(0);
 }
 if (sigaddset(sigs2block, SIGINT) < 0)
 {
 perror("sigaddset(SIGINT)");
 cleanup(0);
 }
 // Only needed if timeout requested, but can't hurt to block it
 if (sigaddset(sigs2block, SIGALRM) < 0)
 {
 perror("sigaddset(SIGALRM)");
 cleanup(0);
 }
 return;
}
/* end set_sigs2block(sigset_t *) */

/**/
void
close_session(SessionManager *sm_p)
{
 if (!quiet)
 {
 cout << sm_p->comm->ngood() << " data packets, "
 << sm_p->comm->ngoodctrl() << " RTCP packets, "
 << sm_p->get_nblocks() << " blocks\n" << flush;
 }
 // Flush any pending data
 if (!lsnr_nosave)
 {
 if (!quiet)
 {
 // turn on the "Don't forget to remove set ..." message
 sm_p->dpss_poc->set_debug(1);
 }
 if (sm_p->close_dpss() < 0)

170
 {
 cerr << "Error closing DPSS/DSM connections; continuing

cleanup\n"
 << flush;
 }
 }
 sm_p->leave_session();
 return;
}
// end close_session(SessionManager *)

/**/
void
I_am_done(void)
{
 char *func = "I_am_done(void)";

 for (int i=0; i < nsessions; ++i)
 {
 smgrs[i]->quit();
 }
 return;
}
// end I_am_done(void)

/**/
void *
timer(void *targs)
{
 TimerArgs *ta_p = (TimerArgs *)targs;
 alarm(ta_p->ns);
 return((void *)1);
}
// end timer(void *)

B.3.3 listener_utils.cc

extern char *optarg;
extern int optind;
// for iss_utils
extern int Debug;

/**/
void
init_ListenerArgs(ListenerArgs *la_p)

171
{
 memset(la_p, 0, sizeof(ListenerArgs));
 la_p->my_id = -1; // a value that will never be valid
 la_p->ttl = DMRP_DEFAULT_TTL; // MRPCommon.h
 la_p->filesz = LSNR_DEFAULT_FILESZ;
 /*
 * You can specify AT MOST one session on the command
 * line--multiple sessions must be specified in a
 * session config file (and a single session can be,
 * too). NOTE: if you specify a session config file,
 * any session info on the command line is ignored.
 */
 la_p->sessions =
 (DMRPSessionInfo *)calloc(1, sizeof(DMRPSessionInfo));
 if (la_p->sessions == NULL)
 {
 cerr << "Couldn't allocate DMRPSessionInfo; out of

memory?\n";
 exit(1);
 }
 la_p->nsessions = 1;
 for (int i = 0; i < la_p->nsessions; ++i)
 {
 la_p->sessions[i].set_id = -1;
 }
 return;
}
/* end init_ListenerArgs(ListenerArgs *) */

/**/
void
parse_args(int ac, char **av, ListenerArgs *la_p)
{
 const char *LSNR_ARGS = "F:I:MS:ab:d:f:hi:l:m:nqs:t:";
 const char *opts = LSNR_ARGS;
 char *prog = av[0];
 int c;

 while ((c = getopt(ac, av, opts)) != EOF)
 {
 switch (c)
 {
 case 'F':
 la_p->sesfile = optarg;
 break;
 case 'I': // ImgLib script
 la_p->imglib_prog = optarg;

172
 break;
 case 'M':
 la_p->flags |= LSNR_NOSAVE_DBG;
 break;
 case 'S':
 la_p->dpss_servs = optarg;
 break;
 case 'a':
 la_p->flags |= LSNR_ALL_PKTS;
 break;
 case 'b':
 la_p->bandwidth = (ui32)atoi(optarg);
 break;
 case 'd':
 la_p->debug = atoi(optarg);
 // for iss_utils lib
 Debug = 1;
 break;
 case 'f':
 la_p->sessions[0].filename = optarg;
 break;
 case 'h':
 usage(prog);
 break;
 case 'i':
 if (optarg == NULL)
 usage(prog);
 la_p->dpss_host = optarg;
 break;
 case 'l':
 if (optarg == NULL)
 usage(prog);
 // option is in minutes, but I need seconds
 la_p->duration = atoi(optarg) * 60;
 break;
 case 'm':
 if (optarg == NULL)
 usage(prog);
 la_p->dsm_host = optarg;
 break;
 case 'n':
 la_p->flags |= LSNR_HIDE_NAME;
 break;
 case 'q':
 la_p->flags |= LSNR_QUIET;
 break;
 case 's':
 if (optarg == NULL)

173
 usage(prog);
 la_p->filesz = (ui32)atoi(optarg);
 break;
 case 't':
 if (optarg == NULL)
 usage(prog);
 la_p->ttl = atoi(optarg);
 break;
 case '?':
 default:
 usage(prog);
 break;
 }
 }
 if (la_p->sesfile)
 {
 free(la_p->sessions);
 la_p->sessions = NULL;
 // debugging
 cout << "Reading session info...\n";
 la_p->nsessions =
 read_conference_file(la_p->sesfile, &la_p->sessions);
 if (la_p->nsessions <= 0)
 {
 cerr << "Error parsing conference configuration file!\n";
 exit(-2);
 }
 for (int i = 0; i < la_p->nsessions; ++i)
 {
 la_p->sessions[i].ttl = la_p->ttl;
 la_p->sessions[i].bandwidth = la_p->bandwidth;
 la_p->sessions[i].filesz = la_p->filesz;
 /* Any timeout on command line overrides conf.
 file value */
 if (la_p->duration)
 la_p->sessions[i].duration = la_p->duration;
 if (la_p->debug)
 print_DMRPSessionInfo(la_p->sessions+i);
 }
 }
 if (!(la_p->flags & LSNR_NOSAVE_DBG)
 && (la_p->sessions[0].filename == NULL))
 {
 cerr << "To save the data, you must specify a filename using

-f"
 << endl;
 usage(prog);
 }

174
 if (optind < ac
 && get_addr_info(av[optind], &la_p->sessions[0].addr,
 &la_p->sessions[0].port) < 0)
 {
 usage(prog);
 }
 return;
}
/* end parse_args */

/**/
void
usage(char *prog)
{
 cerr << "Usage:\n\t" << prog << " [options] -F SES_FILE -S

SERVS\n\n"
 "\t-F SES_FILE\tGet most working parameters from SES_FILE\n"
 "\t\t\t(SES_FILE must be in MBone VCR .vcr format)\n\n"
 "\t\t===== or =====\n\n\t"
 << prog << " [options] -f DPSS_FNAME | -M [-t TTL]\n"
 "\t\t\t[-b BANDWIDTH] -S SERVS ADDR/PORT\n\n"
 "\t-f DPSS_FNAME\tSave data in DPSS under name DPSS_FNAME\n"
 "\t-M\t\tMonitor mode (no data saved)\n"
 "\t-t TTL\t\tSend RTCP packets with time-to-live TTL

(default: "
 << DMRP_DEFAULT_TTL << ")\n"
 "\t-b BANDWIDTH\tExpected transmission rate in bytes/s\n"
 "\t\t\t(Don\'t use -b unless you know what you\'re

doing)\n\n"
 "Required:\n"
 "\t-S SERVS\tSave data on DPSS server(s) SERVS

(comma-separated\n"
 "\t\t\tlist of canonical DPSS hostnames)\n\n"
 "Options:\n"
 "\t-i DPSS_HOST\tDPSS master host\n"
 "\t-m DSM_HOST\tDSM server host\n"
 "\t-s SIZE\t\tReserve SIZE bytes for the data\n"
 "\t\t\t(default: " << LSNR_DEFAULT_FILESZ << " bytes)\n"
 "\t-l MIN\t\tRecord for MIN minutes, then quit\n"
 "\t-a\t\tDon't wait for data to begin saving packets\n"
 "\t\t\t(default is not to start saving until data packets\n"
 "\t\t\tarrive)\n"
 "\t-I SCRIPT\t<for ImgLib use only>\n"
 "\t-d DBG_LVL\tDebug level\n"
 "\t-q\t\tQuiet mode (suppress all but iss_utils status\n"
 "\t\t\tmessages, final stats, and any requested debugging)\n"
 "\t-h\n\n"

175
 "Notes:\n"
 "\t--You must use a session file to record multiple

sessions\n"
 "\t--If not using a session file, must use either -f or -M;

also, \n"
 "\t ADDR/PORT must be last on command line\n\n";
 exit(1);
}
/* end usage */

B.4 Player

The player consists of two main code files, player.cc and player_utils.cc.

player.cc contains the bulk of the player’s code, including main(); player_utils.cc

contains "utility" routines that parse command-line arguments and print the

program’s usage message.

B.4.1 Common definitions

/*
 * Possible flag values. For compatibility with
 * SessionManager, keep player-only flags in high-order
 * byte of flags variable. SM_* defined in SessionManager.h.
 */
const int Experimental = SM_NOSEND;
const ui16 PLAYER_QUIET = SM_QUIET;

struct PlayerArgs
{
 char *dpss_host;
 char *dsm_host;
 char *sesfile;
 ui16 flags;
 int ttl; // multicast ttl
 int bandwidth;
 int nrepeats; // # of times to repeat playback; -1 == forever
 ui16 d; // _d_ebug value
 char v; // _v_erbose, on/off
 int nsessions;
 DMRPSessionInfo *sessions;

176
};

B.4.2 player.cc

// Globals, required because of signal-handling semantics:
char *pname; // required for DPSS
int nsessions;
SessionManager **smgrs;
ui16 quiet = 0;
sigset_t player_sigmask;
pthread_t *thread_ids = NULL;
pthread_mutex_t count_mtx = PTHREAD_MUTEX_INITIALIZER;
int thread_count;
pthread_t sig_thread;
pthread_mutex_t all_threads_done_mtx = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t all_threads_done_cond = PTHREAD_COND_INITIALIZER;
int all_threads_done = 0;
pthread_mutex_t Quit_mtx = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t Quit_cond = PTHREAD_COND_INITIALIZER;
int Quit = 0;

int
main(int argc, char **argv)
{
 PlayerArgs pa;

 if (init(argc, argv, &pa) < 0)
 {
 cerr << "Fatal initialization error\n";
 exit(-1);
 }
 if ((nsessions = register_sessions(smgrs, pa.nsessions))
 != pa.nsessions)
 {
 // currently should be fatal because it's easier
 cerr << "Couldn't join all sessions--fatal error\n";
 cleanup(-1);
 }
 int signo = 0,
 ret,
 i;
 if (sigemptyset(&player_sigmask) < 0)
 {
 perror("sigemptyset()");
 cleanup(0);
 }
 if (sigaddset(&player_sigmask, SIGINT) < 0)

177
 {
 perror("sigaddset()");
 cleanup(0);
 }
 if (sigaddset(&player_sigmask, SIGUSR1) < 0)
 {
 perror("sigaddset()");
 cleanup(0);
 }
 if (ret = pthread_sigmask(SIG_BLOCK, &player_sigmask, NULL))
 {
 cerr << "pthread_sigmask() error: " << strerror(ret)
 << endl;
 cleanup(-1);
 }
 // Start signal handler thread
 if (ret = pthread_create(&sig_thread, NULL,
 handle_signals, &signo))
 {
 cerr << "pthread_create(signal thread): "
 << strerror(ret) << endl << flush;
 exit(1);
 }
 while (pa.nrepeats)
 {
 // debugging
 cout << "Starting threads...\n" << flush;
 /*
 * The "thread_count" variable is a misnomer, since
 * it doesn't keep track of how many threads there
 * are, but ONLY keeps track of how many *session*
 * threads there are (the main thread is NOT
 * considered a session thread).
 */
 set_thread_count(nsessions);
 /*
 * XXX Possible race condition: SIGINT received
 * prior to starting threads (or while starting
 * threads), hence before the condition check below.
 * pthread_signal() will be missed entirely.
 *
 * Prevent by locking all_threads_done_mtx first
 * thing in the while() loop?
 */
 if (start_threads(smgrs, &thread_ids, nsessions) < 0)
 {
 // currently should be fatal because it's easier
 cerr << "Couldn't start threads--fatal error\n";

178
 cleanup(-1);
 }
 int r;
 if (r = pthread_mutex_lock(&all_threads_done_mtx))
 {

cerr << "pthread_mutex_lock():" << strerror(r) << endl <<
flush;

 exit(1);
 }
 if (r = pthread_cond_wait(&all_threads_done_cond,
 &all_threads_done_mtx))
 {
 cerr << "pthread_cond_wait():" << strerror(r) << endl <<

flush;
 exit(1);
 }
 if (all_threads_done)
 {
 if (r = pthread_mutex_unlock(&all_threads_done_mtx))
 {
 cerr << "pthread_mutex_unlock():" << strerror(r)
 << endl << flush;
 exit(1);
 }
 I_am_done();
 // Wait for child threads
 for (i = 0; i < nsessions; ++i)
 {
 // debugging
 cout << "Joining thread " << i << "...\n" << flush;
 if (ret = pthread_join(thread_ids[i], NULL))
 {
 cerr << "pthread_join(): " << strerror(ret) <<

endl
 << flush;
 exit(-3);
 }
 // close_session(smgrs[i]);
 cout << flush;
 }
 // don't exit here
 }
 else // uh oh
 {
 if (r = pthread_mutex_unlock(&all_threads_done_mtx))
 {
 cerr << "pthread_mutex_unlock():" << strerror(r)
 << endl << flush;

179
 exit(1);
 }
 cerr << "Got a signal; abnormal exit...\n" << flush;
 I_am_done();
 for (i = 0; i < nsessions; ++i)
 {
 (void)pthread_join(thread_ids[i], NULL);
 close_session(smgrs[i]);
 }
 exit(-1);
 } // end if (signo == SIGINT || signo == SIGUSR1)/else
 // Make sure all sessions have same start time
 struct timeval tv;
 (void)gettimeofday(&tv, NULL);
 for (i = 0; i < nsessions; ++i)
 {
 smgrs[i]->dpss_poc->seek_dpss(0, SEEK_SET);
 if (pa.d)
 cout << "Resetting RTPComm...\n" << flush;
 smgrs[i]->reset();
 smgrs[i]->comm->set_start_time(tv);
 }
 free(thread_ids);
 if (r = pthread_mutex_lock(&all_threads_done_mtx))
 {

cerr << "pthread_mutex_lock():" << strerror(r) << endl <<
flush;

 exit(1);
 }
 all_threads_done = 0;
 if (r = pthread_mutex_unlock(&all_threads_done_mtx))
 {
 cerr << "pthread_mutex_unlock():" << strerror(r) << endl

<< flush;
 exit(1);
 }
 if (pa.nrepeats > 0)
 --pa.nrepeats;
 if (pa.d)
 {
 if (pa.nrepeats > 1)
 cout << "Playing " << pa.nrepeats << " more times\n"

<< flush;
 else if (pa.nrepeats == 1)
 cout << "Playing once more\n" << flush;
 else if (pa.nrepeats < 0) // playing forever
 cout << "Playing again\n" << flush;
 }

180
 /*
 * Finally: if we were interrupted by SIGINT,
 * don't repeat--just go away
 */
 if (r = pthread_mutex_lock(&Quit_mtx))
 {
 cerr << ": pthread_mutex_lock(Quit):" << strerror(r)
 << endl << flush;
 exit(1);
 }
 if (Quit)
 pa.nrepeats = 0;
 if (r = pthread_mutex_unlock(&Quit_mtx))
 {
 cerr << ": pthread_mutex_unlock(Quit):" << strerror(r)
 << endl << flush;
 exit(1);
 }
 }
 for (i = 0; i < nsessions; ++i)
 {
 close_session(smgrs[i]);
 }
 if (!(pa.flags & PLAYER_QUIET))
 {
 cout << "Done playing\n";
 }
 cleanup(0);
}
/* end main */

/**/
char *
make_toolname(void)
{
 char *basetoolname = "DMRP player";
 char *vers = ", v. 0.3";

 char *toolname = new char[strlen(basetoolname)+strlen(vers)+1];
 strcpy(toolname, basetoolname);
 strcat(toolname, vers);
 return(toolname);
}
/* end make_toolname(void) */

/**/

181
int
init(int argc, char **argv, PlayerArgs *pa_p)
{
 pname = argv[0]; // program name
 // increase file descriptor and stack size limits
 rlimit rl;
 memset(&rl, 0, sizeof(rlimit));
 if (getrlimit(RLIMIT_STACK, &rl) < 0)
 {
 perror("getrlimit()");
 exit(-1);
 }
 rl.rlim_cur = rl.rlim_max;
 if (setrlimit(RLIMIT_STACK, (const rlimit *)&rl) < 0)
 {
 perror("getrlimit()");
 exit(-1);
 }
 memset(&rl, 0, sizeof(rlimit));
 if (getrlimit(RLIMIT_NOFILE, &rl) < 0)
 {
 perror("getrlimit()");
 exit(-1);
 }
 rl.rlim_cur = rl.rlim_max;
 if (setrlimit(RLIMIT_NOFILE, (const rlimit *)&rl) < 0)
 {
 perror("getrlimit()");
 exit(-1);
 }
 init_PlayerArgs(pa_p);
 parse_args(argc, argv, pa_p);
 if (pa_p->flags & PLAYER_QUIET)
 quiet = PLAYER_QUIET;
 char *toolname = make_toolname();
 smgrs = (SessionManager **)calloc(pa_p->nsessions,
 (int)sizeof(SessionManager *));
 if (smgrs == NULL)
 {
 cerr << "Couldn't create new SessionManager array\n";
 return(-1);
 }
 for (int i = 0; i < pa_p->nsessions; ++i)
 {
 try
 {
 smgrs[i] = new SessionManager(toolname,
 &pa_p->sessions[i],

182
 (int)pa_p->d);
 }
 catch (SessionMgrExc e)
 {
 e.print();
 return(-1);
 }
 /*
 * XXX A hack to make sure functionality ripped
 * out of here and dumped into the SessionManager
 * can print or suppress printing in the same way
 */
 smgrs[i]->flags = pa_p->flags;
 if (pa_p->sessions[i].set_id >= 0)
 {
 if (smgrs[i]->open_dpss(pa_p->sessions[i].set_id,
 pa_p->dpss_host,
 pa_p->dsm_host) < 0)
 {
 cerr << "Error creating DPSSPOC " << i << endl;
 return(-1);
 }
 }
 else if (pa_p->sessions[i].filename)
 {
 if (smgrs[i]->open_dpss(pa_p->sessions[i].filename,
 pa_p->dpss_host,
 pa_p->dsm_host) < 0)
 {
 cerr << "Error creating DPSSPOC " << i << endl;
 return(-1);
 }
 }
 else
 {
 cerr << "No valid DPSS filename or set ID found for

session "
 << i << endl;
 return(-1);
 }
 } // end for()
 delete[] toolname;
 return(0);
}
/* end init(int, char **, PlayerArgs *) */

/**/

183
/*
 * Required because Solaris native compiler will not allow
 * pthread_create() to call SessionManager::mcast_send_thr()
 * directly for some reason.
 */
void *
run_session(void *targs)
{
 char *func = "run_session(void *)";
 SessionManager *sm_p = (SessionManager *)targs;
 if (sm_p->mcast_send() < 0)
 {
 cerr << "Error sending data!\n" << endl;
 }
 if (dec_thread_count() <= 0)
 {
 int r;
 if (r = pthread_mutex_lock(&all_threads_done_mtx))
 {

cerr << "pthread_mutex_lock():" << strerror(r) << endl <<
flush;

 exit(1);
 }
 if (!all_threads_done) // if all_threads_done, we got a

SIGINT
 {
 all_threads_done = 1;
 cout << "\tall threads done\n" << flush;
 if (r = pthread_cond_signal(&all_threads_done_cond))
 {
 cerr << "pthread_cond_signal():" << strerror(r)
 << endl << flush;
 exit(1);
 }
 }
 if (r = pthread_mutex_unlock(&all_threads_done_mtx))
 {
 cerr << "pthread_mutex_unlock():" << strerror(r) << endl

<< flush;
 exit(1);
 }
 }
 return((void *)0);
}
// end run_session(void *)

/**/

184
// Exactly the same as start_threads() in listener.cc
int
start_threads(SessionManager **smarray, pthread_t **tids_pp, int ns)
{
 char *func = "start_threads(SessionManager **, pthread_t **,

int)";
 pthread_attr_t tattr;
 int err;

 if (err = pthread_attr_init(&tattr))
 {
 cerr << func << ": pthread_attr_init() error (" <<

strerror(err)
 << ")\n" << flush;
 return(-1);
 }
 if (err = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM))
 {
 cerr << func << ": pthread_attr_setscope() error (" <<

strerror(err)
 << ")\n" << flush;
 return(-1);
 }
 *tids_pp = (pthread_t *)calloc(ns, (int)sizeof(pthread_t));
 if (*tids_pp == NULL)
 {

cerr << "Error creating thread ID array; out of memory?\n" <<
flush;

 return(-1);
 }
#ifdef SOLARIS
 thr_setconcurrency(ns+1); // +1 for signal-watching thread
#endif
 for (int i=0; i < ns; ++i)
 {
 int r = pthread_create((*tids_pp)+i, &tattr,
 run_session, smarray[i]);
 if (r)
 {

cerr << "Error creating thread for session " << i << endl
<< flush;

 // continue?
 return(-1);
 }
 }
 return(0);
}
// end start_threads(SessionManager **, pthread_t **, int)

185
/**/
void *
handle_signals(void *targs)
{
 char *func = "handle_signals(void *)";
 int *signo = (int *)targs,
 ret;

 if ((ret = sigwait(&player_sigmask, signo)) < 0)
 {
 cerr << func << ": " << strerror(ret) << endl << flush;
 exit(-2);
 }
 if (*signo == SIGINT)
 {
 int r;
 // make sure main() knows not to loop for a replay
 if (r = pthread_mutex_lock(&Quit_mtx))
 {
 cerr << func << ": pthread_mutex_lock(Quit):" <<

strerror(r)
 << endl << flush;
 exit(1);
 }
 Quit = 1;
 if (r = pthread_mutex_unlock(&Quit_mtx))
 {
 cerr << func << ": pthread_mutex_unlock(Quit):" <<

strerror(r)
 << endl << flush;
 exit(1);
 }
 if (r = pthread_mutex_lock(&all_threads_done_mtx))
 {
 cerr << func << ": pthread_mutex_lock():" << strerror(r)
 << endl << flush;
 exit(1);
 }
 if (!all_threads_done)
 {
 all_threads_done = 1;
 cout << func << ": all threads done\n" << flush;
 if (r = pthread_cond_signal(&all_threads_done_cond))
 {
 cerr << func << ": pthread_cond_signal():" <<

strerror(r)

186
 << endl << flush;
 exit(1);
 }
 }
 if (r = pthread_mutex_unlock(&all_threads_done_mtx))
 {
 cerr << func << ": pthread_mutex_unlock():" <<

strerror(r)
 << endl << flush;
 exit(1);
 }
 }
 else
 {
 cerr << func << ": received signal " << *signo << endl <<

flush;
 exit(1);
 }
 return((void *)0);
}
// end handle_signals(void *)

/**/
void
#ifdef OS_SOLARIS_2_4
cleanup(int sig)
#else
cleanup(...)
#endif
{
 if (!nsessions)
 cerr << "No sessions!\n";
 return;
}
/* end cleanup */

/**/
int
register_sessions(SessionManager **sessions, int ns)
{
 char *func = "register_sessions()";
 int nsuccessful = 0;

 struct timeval tv;
 (void)gettimeofday(&tv, NULL);

187
 for (int i = 0; i < ns; ++i)
 {
 // address and port initialized by memcpy() in init()
 if (sessions[i]->register_session() < 0)
 {
 cerr << "Couldn't register session at address "
 << sessions[i]->si.addr << "/"
 << sessions[i]->si.port << endl;
 break;
 }
 else
 {
 // Make sure all sessions have same start time
 sessions[i]->comm->set_start_time(tv);
 /* Make sure sessions advertise themselves
 as "replay," initially */
 sessions[i]->comm->set_name("DMRP replay");
 ++nsuccessful;
 }
 }
 return(nsuccessful);
}
// end register_sessions(SessionManager **, int)

/**/
void
set_sig_handlers(void)
{
 struct sigaction action;

 memset(&action, 0, (int)sizeof(action));
#ifdef SOL2_5_SIGNALS
 action.sa_handler = cleanup;
#else
 action.sa_handler = (void(*)())cleanup;
#endif
 if (sigaction(SIGINT, &action, NULL) == -1)
 {
 perror("sigaction");
 cerr << "Unable to set SIGINT handler\n";
 exit(-1);
 }
 return;
}
/* end set_sig_handlers(void) */

188
/**/
void
close_session(SessionManager *sm_p)
{
 if (sm_p->dpss_poc->close_dpss() < 0)
 {
 cerr << "Error closing DPSS/DSM connections; continuing

cleanup\n"
 << flush;
 }
 sm_p->leave_session();
 return;
}
// end close_session(SessionManager *)

/**/
void
I_am_done(void)
{
 char *func = "I_am_done(void)";

 for (int i=0; i < nsessions; ++i)
 {
 smgrs[i]->quit();
 }
 return;
}
// end I_am_done(void)

/**/
void
set_thread_count(int nthreads)
{
 mrp_lock_mutex(&count_mtx);
 thread_count = nthreads;
 mrp_unlock_mutex(&count_mtx);
 return;
}
// end set_thread_count(int)

/**/
int
dec_thread_count(void)
{
 mrp_lock_mutex(&count_mtx);

189
 int tc = --thread_count;
 mrp_unlock_mutex(&count_mtx);
 return(tc);
}
// end dec_thread_count(void)

B.4.3 player_utils.cc

// Need to be declared globally to prevent compiler from complaining
extern char *optarg;
extern int optind;

/**/
void
init_PlayerArgs(PlayerArgs *pa_p)
{
 if (pa_p == NULL)
 return;
 memset(pa_p, 0, sizeof(PlayerArgs));
 pa_p->flags = 0;
 pa_p->ttl = DMRP_DEFAULT_TTL; // defined in MRPCommon.h
 pa_p->nrepeats = 1; // play back file once
 pa_p->d = 0;
 pa_p->v = 0;
 pa_p->sessions =
 (DMRPSessionInfo *)calloc(1, sizeof(DMRPSessionInfo));
 if (pa_p->sessions == NULL)
 {
 cerr << "Couldn't allocate DMRPSessionInfo; out of

memory?\n";
 exit(1);
 }
 pa_p->nsessions = 1;
 for (int i = 0; i < pa_p->nsessions; ++i)
 {
 pa_p->sessions[i].set_id = -1;
 }
 return;
}
/* end init_PlayerArgs(PlayerArgs *) */

/**/
void
parse_args(int ac, char **av, PlayerArgs *pa_p)
{
 // x only for development

190
 const char *PLAY_ARGS = "F:b:d:f:hi:m:qr:s:t:vx";
 const char *opts = PLAY_ARGS;
 char *prog = av[0];
 int c;

 while ((c = getopt(ac, av, opts)) != EOF)
 {
 switch (c)
 {
 case 'F':
 if (optarg == NULL)
 usage(prog);
 pa_p->sesfile = optarg;
 break;
 case 'b':
 if (optarg == NULL)
 usage(prog);
 pa_p->bandwidth = (ui32)atoi(optarg);
 break;
 case 'd':
 if (optarg == NULL)
 usage(prog);
 pa_p->d = (ui16)atoi(optarg);
 break;
 case 'f':
 if (optarg == NULL)
 usage(prog);
 pa_p->sessions[0].filename = optarg;
 break;
 case 'h':
 usage(prog);
 break;
 case 'i':
 if (optarg == NULL)
 usage(prog);
 pa_p->dpss_host = optarg;
 break;
 case 'm':
 if (optarg == NULL)
 usage(prog);
 pa_p->dsm_host = optarg;
 break;
 case 'q':
 pa_p->flags |= PLAYER_QUIET;
 break;
 case 'r':
 if (optarg == NULL)
 usage(prog);

191
 pa_p->nrepeats = atoi(optarg);
 break;
 case 's':
 if (optarg == NULL)
 usage(prog);
 pa_p->sessions[0].set_id = atoi(optarg);
 break;
 case 't':
 if (optarg == NULL)
 usage(prog);
 pa_p->ttl = atoi(optarg);
 break;
 case 'v':
 pa_p->v = 1;
 break;
 case 'x':
 pa_p->flags |= Experimental;
 break;
 case '?':
 default:
 usage(prog);
 }
 }
 if (pa_p->sesfile)
 {
 free(pa_p->sessions);
 pa_p->sessions = NULL;
 // debugging
 cout << "Reading session info...\n";
 pa_p->nsessions = read_conference_file(pa_p->sesfile,

&pa_p->sessions);
 if (pa_p->nsessions <= 0)
 {
 cerr << "Error parsing conference configuration file!\n";
 exit(-2);
 }
 for (int i = 0; i < pa_p->nsessions; ++i)
 {
 pa_p->sessions[i].ttl = pa_p->ttl;
 pa_p->sessions[i].bandwidth = pa_p->bandwidth;
 if (pa_p->d)
 print_DMRPSessionInfo(pa_p->sessions+i);
 }
 }
 else if (optind < ac && get_addr_info(av[optind],
 &pa_p->sessions[0].addr,
 &pa_p->sessions[0].port)
 < 0)

192
 {
 usage(prog);
 }
 for (; optind < ac; ++optind)
 {
 cout << av[optind] << "\n";
 }
 return;
}
/* end parse_args(int, char **, PlayerArgs *) */

/**/
void
usage(char *prog)
{
 cerr << "Usage:\n\t" << prog << " [options] -F SES_FILE\n\n"
 "\t-F SES_FILE\tGet all working parameters from SES_FILE\n"
 "\t\t\t(SES_FILE must be in MBone VCR .vcr format)\n\n"
 "\t\t===== or =====\n\n\t"
 << prog << " [options] [-t TTL] [-b BANDWIDTH]\n"
 "\t\t\t-f DPSS_FILENAME | -s SET_ID ADDR/PORT\n\n"
 "\t-t TTL\t\tSend using time-to-live TTL\n"
 "\t-b BANDWIDTH\tExpected bandwidth in bytes/s (for RTCP)\n"
 "\t\t\t(Don\'t use -b unless you know what you\'re

doing)\n\n"
 "Options:\n"
 "\t-i DPSS_HOST\tDPSS master host\n"
 "\t-m DSM_HOST\tDSM server host\n"
 "\t-r NUM\t\tRepeat NUM times; -1 = forever\n"
 "\t-x\t\tExperimental mode (don\'t send to net)\n"
 "\t-d DBG_LVL\tDebug level\n"
 "\t-v\t\tVerbose mode\n"
 "\t-q\t\tQuiet mode (suppress all but iss_utils status\n"
 "\t\t\tmessages)\n"
 "\t-h\n\n"
 "Notes:\n"
 "\t--You must use a session file to play back multiple

sessions\n"
 "\t--If not using a session file, must use either -f or -s;

also, \n"
 "\t ADDR/PORT must be last on command line\n\n";
 exit(1);
}
/* end usage */

	AN MBONE RECORDER/PLAYER
	A thesis submitted to the faculty of
	San Francisco State University
	in partial fulfillment of the
	requirements for the
	degree
	Master of Science
	in
	Computer Science
	by
	Gary Hoo
	San Francisco, California
	December, 1997
	Copyright by
	Gary Hoo
	1997
	CERTIFICATION OF APPROVAL
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1 INTRODUCTION 1
	2 BACKGROUND 4
	2.1 Multicasting 4
	2.1.1 Multicasting on the Internet 5
	2.1.2 A New Protocol: RTP/RTCP 8
	2.1.2.1 Limitations of UDP and TCP 8
	2.1.2.2 RTP 11
	2.1.2.3 RTCP 16
	2.1.2.4 Protocol Customization 24

	2.1.3 Other Internet Conferencing Protocols 25
	2.1.4 Existing MBone applications 32
	2.2 The Distributed-Parallel Storage System 35

	2.2.1 Purpose 35
	2.2.2 Functionality 36
	2.2.3 Architecture and Client Use 38

	3 FUNCTIONALITY AND DESIGN ISSUES 42
	3.1 RTP/RTCP Packet Management 42
	3.2 DPSS Constraints 43
	3.3 Other Design Considerations 45
	3.4 Design 46

	4 IMPLEMENTATION AND ARCHITECTURE OF THE DMRP 49
	4.1 Introduction 49
	4.1.1 C++ Terminology and Notation 50
	4.1.2 C++ Standard Template Library 51
	4.1.3 Threads 52
	4.2 DMRP Classes 54

	4.2.1 Generic Networking Classes 55
	4.2.1.1 IPNetAP 55
	4.2.1.2 IPAddr 57

	4.2.2 RTP/RTCP State Management Classes 57
	4.2.2.1 RTPSource 57
	4.2.2.2 RTPSourceList 59
	4.2.2.3 RTPSession 60

	4.2.3 RTP Packet-Handling Classes 61
	4.2.3.1 RTPFormat 61
	4.2.3.2 Timer 62
	4.2.3.3 RTPHandler 63
	4.2.3.4 RTPDataHandler 64
	4.2.3.5 RTPCtrlHandler 67

	4.2.4 RTP/RTCP Protocol Management Class: RTPComm 73
	4.2.5 DPSS Interface Class: DPSSPOC 78
	4.2.6 DMRP Session Management Class: SessionManager 83
	4.2.6.1 Construction and Initialization 83
	4.2.6.2 Recording 84
	4.2.6.3 Automatic Suspension of Recording 87
	4.2.6.4 Playback 88
	4.2.6.5 Shutdown 91

	4.2.7 Application Status Class: AppStatus 92
	4.3 Recorder 95
	4.4 Player 102

	5 PERFORMANCE AND SCALABILITY 106
	6 FUTURE WORK 110
	7 CONCLUSIONS 115

	LIST OF TABLES
	1. RTCP Packet Types 18
	2. RTCP SDES Item Types 22

	LIST OF FIGURES
	1. RTP Fixed Packet Header 13
	2. RTCP Common Packet Header 17
	3. RTCP SR Packet 19
	4. RTCP SDES Packet 21
	5. RTCP SDES Item 22
	6. DMRP Packet Manager (conceptual design) 43
	7. DMRP design 47
	8. DMRP recorder and other MBone tools 96
	9. DMRP recorder (detail) 97
	10. DMRPSessionInfo structure 98
	11. DMRP player and client applications 102
	12. DMRP player (detail) 103

	LIST OF APPENDICES
	A Testing Methodologies and Details 122
	A.1 DPSS Throughput Test Methodology 122
	A.2 DMRP Test Methodology 124
	B DMRP Source Code 126
	B.1 DMRP Shared Classes 126
	B.1.1 Networking Classes 126
	B.1.1.1 NetAddr 126
	B.1.1.2 IPAddr 127
	B.1.1.3 NetAP 128
	B.1.1.4 IPNetAP 128

	B.1.2 RTP/RTCP Classes 129
	B.1.2.1 RTPSource 129
	B.1.2.2 RTPSourceList 132
	B.1.2.3 RTPSession 132
	B.1.2.4 RTPFormat 133
	B.1.2.5 Timer 134
	B.1.2.6 RTPHandler 136
	B.1.2.7 RTPDataHandler 137
	B.1.2.8 RTPCtrlHandler 138
	B.1.2.9 RTPComm 142

	B.1.3 DPSS I/O Classes 145
	B.1.3.1 DPSSState 145
	B.1.3.2 StorageIOBase 145
	B.1.3.3 DPSSPOC 145

	B.1.4 SessionManager 147
	B.1.5 AppStatus 150
	B.2 DMRP common functions 150
	B.3 Recorder 159
	B.3.1 Common definitions 159
	B.3.2 listener.cc 160
	B.3.3 listener_utils.cc 170
	B.4 Player 175
	B.4.1 Common definitions 175
	B.4.2 player.cc 176
	B.4.3 player_utils.cc 189
	AN MBONE RECORDER/PLAYER
	Gary Hoo
	San Francisco State University
	1997
	DPSS
	I/O
	Session manager
	to/from DPSS
	to/from MBone
	to/from MBone
	Session manager
	Session manager
	Session manager
	...
	Recorder or player
	RTP TS
	SSRC ID
	SEQ
	PT
	M
	P
	X
	CC
	V
	Shared state DB
	Control packet handler
	Data packet handler
	Shared state DB
	Data packet handler
	Control packet handler
	Data buffer
	Sender’s SSRC ID
	SSRC_1 (first source’s SSRC ID)

	LEN
	PT
	LEN
	PT
	P
	V
	C
	P
	V
	C
	LEN
	PT
	P
	V
	C
	NTP TS (MSW)
	LEN
	PT
	P
	V
	RC
	Fraction lost
	NTP TS (LSW)
	RTP TS
	Sender’s packet count
	Sender’s octet count
	Cumulative no. of lost packets
	Extended highest sequence no. seen
	Interarrival jitter
	Last SR (LSR)
	Delay since last SR (DLSR)
	SSRC_2 (second source’s SSRC ID)
	profile-specific extensions
	...

	LEN
	PT
	P
	V
	C
	LEN
	PT
	P
	V
	RC
	SSRC_1/CSRC_1 (first source’s SSRC ID)
	SDES items
	SSRC_2/CSRC_2 (second source’s SSRC ID)
	SDES items
	...

	LEN
	PT
	P
	V
	C
	TYPE
	LEN
	TEXT

	CHAPTER I
	INTRODUCTION

	CHAPTER II
	BACKGROUND
	II.1 Multicasting
	II.1.1 Multicasting on the Internet
	II.1.2 A New Protocol: RTP/RTCP
	II.1.2.1 Limitations of UDP and TCP
	II.1.2.2 RTP
	Figure 1. RTP Fixed Packet Header

	II.1.2.3 RTCP
	1. It provides "feedback on the quality of the data distribution." This feedback can be used by o...
	2. It carries an RTP source's canonical name, which is a persistent identifier for the source, un...
	3. Because every session participant must send RTCP packets, participants can determine the total...
	Figure 2. RTCP Common Packet Header
	Table 1. RTCP Packet Types
	Figure 3. RTCP SR Packet
	Figure 4. RTCP SDES Packet
	Figure 5. RTCP SDES Item
	Table 2. RTCP SDES Item Types

	II.1.2.4 Protocol Customization

	II.1.3 Other Internet Conferencing Protocols
	II.1.4 Existing MBone applications

	II.2 The Distributed-Parallel Storage System
	II.2.1 Purpose
	II.2.2 Functionality
	II.2.3 Architecture and Client Use

	CHAPTER III
	FUNCTIONALITY AND DESIGN ISSUES
	III.1 RTP/RTCP Packet Management
	Figure 6. DMRP Packet Manager (conceptual design)

	III.2 DPSS Constraints
	III.3 Other Design Considerations
	III.4 Design
	Figure 7. DMRP design

	CHAPTER IV
	IMPLEMENTATION AND ARCHITECTURE OF THE DMRP
	IV.1 Introduction
	IV.1.1 C++ Terminology and Notation
	IV.1.2 C++ Standard Template Library
	IV.1.3 Threads

	IV.2 DMRP Classes
	IV.2.1 Generic Networking Classes
	IV.2.1.1 IPNetAP
	IV.2.1.2 IPAddr

	IV.2.2 RTP/RTCP State Management Classes
	IV.2.2.1 RTPSource
	IV.2.2.2 RTPSourceList
	IV.2.2.3 RTPSession

	IV.2.3 RTP Packet-Handling Classes
	IV.2.3.1 RTPFormat
	IV.2.3.2 Timer
	IV.2.3.3 RTPHandler
	IV.2.3.4 RTPDataHandler
	IV.2.3.5 RTPCtrlHandler

	IV.2.4 RTP/RTCP Protocol Management Class: RTPComm
	IV.2.5 DPSS Interface Class: DPSSPOC
	IV.2.6 DMRP Session Management Class: SessionManager
	IV.2.6.1 Construction and Initialization
	IV.2.6.2 Recording
	IV.2.6.3 Automatic Suspension of Recording
	IV.2.6.4 Playback
	IV.2.6.5 Shutdown

	IV.2.7 Application Status Class: AppStatus

	IV.3 Recorder
	Figure 8. DMRP recorder and other MBone tools
	Figure 9. DMRP recorder (detail)
	Figure 10. DMRPSessionInfo structure

	IV.4 Player
	Figure 11. DMRP player and client applications
	Figure 12. DMRP player (detail)

	CHAPTER V
	PERFORMANCE AND SCALABILITY

	CHAPTER VI
	FUTURE WORK

	CHAPTER VII
	CONCLUSIONS

	REFERENCES
	[1] Berc, L., W. Fenner, R. Frederick and S. McCanne. 1996. RTP Payload Format for JPEG-compresse...
	[2] Braden, R., L. Zhang, S. Berson, S. Herzog and S. Jamin. 1997. Resource ReSerVation Protocol ...
	[3] Butenhof, D. R. 1997. Programming with POSIX(R) Threads. Addison-Wesley professional computin...
	[4] Cavanaugh, J. 1994. "Protocol Overhead in IP/ATM Networks." Available from http://www.msci.ma...
	[5] Chen, L. T. and D. Rotem. 1993. "Declustering Objects for Visualization," Proc. of the 19th V...
	[6] Deering, Steve. 1989. Host Extensions for IP Multicasting. IETF Request for Comments 1112.
	[7] Eriksson, Hans. 1994. "MBONE: The Multicast Backbone," Communications of the ACM (August 1994...
	[8] Fenner, W. 1997. Internet Group Management Protocol, Version 2. IETF Internet Draft draft-iet...
	[9] Fielding, R., J. Gettys, J. Mogul, H. Frystyk and T. Berners-Lee. 1997. Hypertext Transfer Pr...
	[10] Floyd, S., V. Jacobson, C. Liu, S. McCanne and L. Zhang. 1995. "A Reliable Multicast Framewo...
	[11] Greiman, W., W. E. Johnston, C. McParland, D. Olson, B. Tierney, C. Tull. 1997. "High-Speed ...
	[12] Handley, M. 1996. SAP: Session Announcement Protocol. IETF Internet Draft draft-ietf-mmusic-...
	[13] Handley, M., J. Crowcroft, C. Bormann and J. Ott. 1997. The Internet Multimedia Conferencing...
	[14] Handley, M. and V. Jacobson. 1997. SDP: Session Description Protocol. IETF Internet Draft dr...
	[15] Handley, M., H. Schulzrinne and E. Schooler. 1997. SIP: Session Initiation Protocol. IETF In...
	[16] Hoffman, D., G. Fernando and V. Goyal. 1996. RTP Payload Format for MPEG1/MPEG2 Video. IETF ...
	[17] Holfelder, W. 1995. "Mbone VCR - Video Conference Recording on the MBone," ACM Multimedia 95...
	[18] Hoo, G. 1996. tv_sim home page. Available at http://www-itg.lbl.gov/ISS/userguide/tv_sim.html.
	[19] Johnston, W., G. Jin, C. Larsen, J. Lee, G. Hoo, M. Thompson and B. Tierney. 1997. "Real-Tim...
	[20] Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin and J. R. Lee. 1994. "Distribut...
	[21] Johnston, W. E., B. L. Tierney, H. M. Herzog, G. Hoo, G. Jin and J. R. Lee. 1994. "Using Hig...
	[22] Johnston, W., B. Tierney, J. Lee, G. Hoo and M. Thompson. 1996. "Distributed Large Data-Obje...
	[23] Kouvelas, I. and V. Hardman. 1997. "Overcoming Workstation Scheduling Problems in a Real-Tim...
	[24] Leclerc, Y. and S. Q. Lau. 1994. "TerraVision: A Terrain Visualization System," Technical No...
	[25] McCanne, S. 1992. "A Distributed Whiteboard for Network Conferencing" (unpublished term proj...
	[26] McCanne, S. and V. Jacobson. 1995. "vic: A Flexible Framework for Packet Video," ACM Multime...
	[27] Mills, D. 1992. Network Time Protocol (Version 3) Specification, Implementation and Analysis...
	[28] Network Research Group, Lawrence Berkeley National Laboratory. LBNL Audio Conferencing Tool ...
	[29] Perkins, C., I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J.C. Bolot, A. Vega-Garcia and ...
	[30] Perry, M. 1997. Confcntlr home page. Available at http://www-itg.lbl.gov/mbone/confcntlr.
	[31] Postel, Jon. 1981. Internet Protocol. IETF Request for Comments 791.
	[32] Postel, Jon. 1982. Simple Mail Transfer Protocol. IETF Request for Comments 821.
	[33] Schulzrinne, H. 1996. RTP Profile for Audio and Video Conferences with Minimal Control. IETF...
	[34] Schulzrinne, H., S. Casner, R. Frederick and V. Jacobson. 1996. RTP: A Transport Protocol fo...
	[35] Schulzrinne, H., A. Rao and R. Lanphier. 1997. Real Time Streaming Protocol (RTSP). IETF Int...
	[36] Stepanov, A. and M. Lee. 1995. The Standard Template Library. Hewlett-Packard. Available fro...
	[37] Stroustrup, B. 1991. The C++ Programming Language. Reprinted with corrections 1995. Reading,...
	[38] Thompson, M., W. Johnston, G. Jin, J. Lee, B. Tierney and J. F. Terdiman. 1996. "Distributed...
	[39] Tierney, B., W. Johnston, H. Herzog, G. Hoo, G. Jin and J. Lee. 1994. "System Issues in Impl...
	[40] Turletti, T. and C. Huitema. 1996. RTP Payload Format for H.261 Video Streams. IETF Request ...
	[41] Wiltzius, D., L. Berc and S. Devadhar. 1996. "BAGNet: Experiences with an ATM metropolitan-a...
	APPENDIX A
	Testing Methodologies and Details
	A.1 DPSS Throughput Test Methodology
	A.2 DMRP Test Methodology

	APPENDIX B
	DMRP Source Code
	B.1 DMRP Shared Classes
	B.1.1 Networking Classes
	B.1.1.1 NetAddr
	B.1.1.2 IPAddr
	B.1.1.3 NetAP
	B.1.1.4 IPNetAP

	B.1.2 RTP/RTCP Classes
	B.1.2.1 RTPSource
	B.1.2.2 RTPSourceList
	B.1.2.3 RTPSession
	B.1.2.4 RTPFormat
	B.1.2.5 Timer
	B.1.2.6 RTPHandler
	B.1.2.7 RTPDataHandler
	B.1.2.8 RTPCtrlHandler
	B.1.2.9 RTPComm

	B.1.3 DPSS I/O Classes
	B.1.3.1 DPSSState
	B.1.3.2 StorageIOBase
	B.1.3.3 DPSSPOC

	B.1.4 SessionManager
	B.1.5 AppStatus

	B.2 DMRP common functions
	B.3 Recorder
	B.3.1 Common definitions
	B.3.2 listener.cc
	B.3.3 listener_utils.cc

	B.4 Player
	B.4.1 Common definitions
	B.4.2 player.cc
	B.4.3 player_utils.cc

